Stability of equilibria and bifurcations for a fluid-solid interaction problem

被引:0
|
作者
Bonheure, Denis [1 ]
Galdi, Giovanni P. [2 ]
Gazzola, Filippo [3 ]
机构
[1] Univ Libre Bruxelles, Dept Math, Blvd Triomphe 155, B-1050 Brussels, Belgium
[2] Univ Pittsburgh, Dipartment Mech Engn & Mat Sci, 4200 5th Ave, Pittsburgh, PA 15213 USA
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
基金
美国国家科学基金会;
关键词
Navier-Stokes equations for incompressible viscous fluids; Fluid-solid interaction; Stability; Steady bifurcation; RIGID-BODY; FLOW; EXISTENCE; MOTION; LIQUID;
D O I
10.1016/j.jde.2024.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study certain significant properties of the equilibrium configurations of a rigid body subject to an undamped elastic restoring force, in the stream of a viscous liquid in an unbounded 3D domain. The motion of the coupled system is driven by a uniform flow at spatial infinity, with constant dimensionless velocity lambda. We show that if lambda is below a critical value, lambda(c )(say), there is a unique and stable time-independent configuration, where the body is in equilibrium and the flow is steady. We also prove that, if lambda < lambda(c) , no oscillatory flow may occur. Successively, we investigate possible loss of uniqueness by providing necessary and sufficient conditions for the occurrence of a steady bifurcation at some lambda(s) >= lambda (c) . (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页码:324 / 367
页数:44
相关论文
共 50 条
  • [31] Special issue on fluid-solid interaction problems
    Kwon, YW
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2001, 123 (04): : 405 - 405
  • [32] Weak solutions of fluid-solid interaction problems
    Hsiao, GC
    Kleinman, RE
    Roach, GF
    MATHEMATISCHE NACHRICHTEN, 2000, 218 : 139 - 163
  • [33] Practical problems of dynamic similarity criteria in fluid-solid interaction at different fluid-solid relative motions
    Flaga, Andrzej
    Klaput, Renata
    Flaga, Lukasz
    ARCHIVES OF CIVIL ENGINEERING, 2024, 70 (01) : 97 - 120
  • [34] The multiple roles of interfacial tension in fluid phase equilibria and fluid-solid interactions
    Rao, Dandina N.
    Ayirala, Subhash C.
    Journal of Adhesion Science and Technology, 2006, 20 (2-3): : 125 - 142
  • [35] The multiple roles of interfacial tension in fluid phase equilibria and fluid-solid interactions
    Rao, DN
    Ayirala, SC
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2006, 20 (2-3) : 125 - 142
  • [36] Analysis of finite element methods and domain decomposition algorithms for a fluid-solid interaction problem
    Feng, XB
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (04) : 1312 - 1336
  • [37] Linear Sampling and Reciprocity Gap Methods for a Fluid-Solid Interaction Problem in the Near Field
    Monk, Peter
    Selgas, Virginia
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [38] BOUNDARY INTEGRAL EQUATION METHODS FOR THE TWO-DIMENSIONAL FLUID-SOLID INTERACTION PROBLEM
    Yin, Tao
    Hsiao, George C.
    Xu, Liwei
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (05) : 2361 - 2393
  • [39] A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem
    Jiang, Fei
    Liu, Haihu
    Chen, Xian
    Tsuji, Takeshi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 454
  • [40] Canonical problem for fluid-solid interfacial wave coupling
    Proc Royal Soc London Ser A Math Phys Eng Sci, 1950 (1695-1711):