Nanofluidic Ionic Memristors

被引:20
作者
Xu, Guoheng [1 ]
Zhang, Miliang [1 ]
Mei, Tingting [1 ]
Liu, Wenchao [1 ]
Wang, Li [1 ]
Xiao, Kai [1 ]
机构
[1] Southern Univ Sci & Technol SUSTech, Inst Innovat Mat, Dept Biomed Engn, Guangdong Prov Key Lab Adv Biomat, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
ionic memristors; nanofluidic; ion channels; ion transport; biomimetic materials; neuromorphicdevices; iontronic; bionics; OVERLIMITING CURRENT; FLUIDIC MEMRISTOR; NOISE SPECTRA; TERM-MEMORY; TRANSPORT; WATER; NANOPORES; NETWORKS; SYNAPSE; NANOCHANNEL;
D O I
10.1021/acsnano.4c06467
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Living organisms use ions and small molecules as information carriers to communicate with the external environment at ultralow power consumption. Inspired by biological systems, artificial ion-based devices have emerged in recent years to try to realize efficient information-processing paradigms. Nanofluidic ionic memristors, memory resistors based on confined fluidic systems whose internal ionic conductance states depend on the historical voltage, have attracted broad attention and are used as neuromorphic devices for computing. Despite their high exposure, nanofluidic ionic memristors are still in the initial stage. Therefore, systematic guidance for developing and reasonably designing ionic memristors is necessary. This review systematically summarizes the history, mechanisms, and potential applications of nanofluidic ionic memristors. The essential challenges in the field and the outlook for the future potential applications of nanofluidic ionic memristors are also discussed.
引用
收藏
页码:19423 / 19442
页数:20
相关论文
共 145 条
[51]   Ionic Coulomb blockade as a fractional Wien effect [J].
Kavokine, Nikita ;
Marbach, Sophie ;
Siria, Alessandro ;
Bocquet, Lyderic .
NATURE NANOTECHNOLOGY, 2019, 14 (06) :573-578
[52]   Ionoelastomer junctions between polymer networks of fixed anions and cations [J].
Kim, Hyeong Jun ;
Chen, Baohong ;
Suo, Zhigang ;
Hayward, Ryan C. .
SCIENCE, 2020, 367 (6479) :773-+
[53]   Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel [J].
Kim, Sung Jae ;
Wang, Ying-Chih ;
Lee, Jeong Hoon ;
Jang, Hongchul ;
Han, Jongyoon .
PHYSICAL REVIEW LETTERS, 2007, 99 (04)
[54]   Ionic Coulomb blockade in nanopores [J].
Krems, Matt ;
Di Ventra, Massimiliano .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (06)
[55]   ZnO-based hybrid nanocomposite for high- performance resistive switching devices: Way to smart electronic synapses [J].
Kumar, Anirudh ;
Preeti, KM. ;
Singh, Satendra Pal ;
Lee, Sejoon ;
Kaushik, Ajeet ;
Sharma, Sanjeev K. .
MATERIALS TODAY, 2023, 69 :262-286
[56]   Third-order nanocircuit elements for neuromorphic engineering [J].
Kumar, Suhas ;
Williams, R. Stanley ;
Wang, Ziwen .
NATURE, 2020, 585 (7826) :518-+
[57]   The metabolic cost of neural information [J].
Laughlin, SB ;
van Steveninck, RRD ;
Anderson, JC .
NATURE NEUROSCIENCE, 1998, 1 (01) :36-41
[58]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[59]   Overlimiting Current in Nonuniform Arrays of Microchannels: Recirculating Flow and Anticrystallization [J].
Lee, Hyekyung ;
Sohn, Seoyun ;
Alizadeh, Shima ;
Kwon, Soonhyun ;
Kim, Tae Jin ;
Park, Seung-min ;
Soh, Hyongsok Tom ;
Mani, Ali ;
Kim, Sung Jae .
NANO LETTERS, 2021, 21 (12) :5438-5446
[60]  
Leger J., 2011, IONTRONICSIONIC CARR