Essential self-adjointness of Dirac operators under the influence of general-relativistic gravity

被引:0
作者
Kiessling, Michael K. -H. [1 ]
Tahvildar-Zadeh, A. Shadi [1 ]
Toprak, Ebru [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Yale Univ, Dept Math, New Haven, CT 06520 USA
来源
SIXTEENTH MARCEL GROSSMANN MEETING | 2023年
关键词
Dirac hamiltonian; Reissner-Weyl-Nordstrom spacetime; self-adjointness;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Physical reasoning gives expressions for the hamiltonian of a system of quantum-mechanical particles. These hamiltonians are often differential operators that are symmetric in a densely-defined domain. However, to study the dynamics of the unitary group corresponding to a hamiltonian, it is required that the hamiltonian be self-adjoint or essentially self-adjoint. This study analyzes the effect of the static non-linear electromagnetic-vacuum spacetime of a point nucleus on the self-adjointness and the spectrum of the general-relativistic Dirac hamiltonian for a test electron.
引用
收藏
页码:736 / 742
页数:7
相关论文
共 7 条
  • [1] Naked Reissner-Nordstrom singularities and the anomalous magnetic moment of the electron field
    Belgiorno, F
    Martellini, M
    Baldicchi, M
    [J]. PHYSICAL REVIEW D, 2000, 62 (08) : 1 - 11
  • [2] THE GENERAL RELATIVISTIC HYDROGEN-ATOM
    COHEN, JM
    POWERS, RT
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 86 (01) : 69 - 86
  • [3] On the Dirac operator for a test electron in a Reissner-Weyl-Nordstrom black hole spacetime
    Kiessling, Michael K-H
    Tahvildar-Zadeh, A. Shadi
    Toprak, Ebru
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2021, 53 (01)
  • [4] On general-relativistic hydrogen and hydrogenic ions
    Kiessling, Michael K-H
    Tahvildar-Zadeh, A. Shadi
    Toprak, Ebru
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (09)
  • [5] ON THE STATIC SPACETIME OF A SINGLE POINT CHARGE
    Tahvildar-Zadeh, A. Shadi
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2011, 23 (03) : 309 - 346
  • [6] Thaller B., 1992, The Dirac equation
  • [7] Weyl H., 1952, Space-Time-Matter