Hybrid Surface Modification and Bulk Doping Enable Spent LiCoO2 Cathodes for High-Voltage Operation

被引:7
|
作者
Liu, Zhenzhen [1 ,2 ]
Han, Miaomiao [3 ]
Zhang, Shengbo [1 ]
Li, Huaimeng [1 ]
Wu, Xi [1 ,2 ]
Fu, Zhen [1 ]
Zhang, Haimin [1 ,2 ]
Wang, Guozhong [1 ,2 ]
Zhang, Yunxia [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Hefei Inst Phys Sci, Ctr Environm & Energy Nanomat,Key Lab Mat Phys,Anh, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China
基金
中国国家自然科学基金;
关键词
bulk Mn doping; high voltage; Li3PO4/CoP hybrid coating; spent LiCoO2; upcycling; CYCLING PERFORMANCE; LITHIUM; OXIDE;
D O I
10.1002/adma.202404188
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emerging market demand for high-energy-density of energy storage devices is pushing the disposal of end-of-life LiCoO2 (LCO) to shift toward sustainable upgrading into structurally stable high-voltage cathode materials. Herein, an integrated bulk and surface commodification strategy is proposed to render spent LCO (S-LCO) to operate at high voltages, involving bulk Mn doping, near surface P gradient doping, and Li3PO4/CoP (LPO/CP) coating on the LCO surface to yield upcycled LCO (defined as MP-LCO@LPO/CP). Benefiting from hybrid surface coating with Li+-conductive Li3PO4 (LPO) and electron conductive CoP (CP) coupled with Mn and P co-doping, the optimized MP-LCO@LPO/CP cathode exhibits enhanced high-voltage performance, delivering an initial discharge capacity of 218.8 mAh g(-1) at 0.2 C with excellent capacity retention of 80.9% (0.5 C) after 200 cycles at a cut-off voltage of 4.6 V, along with 96.3% of capacity retention over 100 cycles at 4.5 V. These findings may afford meaningful construction for the upcycling of commercial S-LCO into next-generation upmarket cathode materials through the elaborate surface and bulk modification design.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Al Impurity Upcycled High-Voltage Cathodes from Spent LiCoO2 Batteries
    Zhang, Baichao
    Chen, Shou
    Yang, Lu
    Zhu, Fangjun
    Hu, Xinyu
    Hong, Ningyun
    Wang, Haoji
    Zeng, Jingyao
    Huang, Jiangnan
    Shu, Yumin
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Silvester, Debbie S.
    Banks, Craig E.
    Ji, Xiaobo
    ACS NANO, 2024, 18 (34) : 23773 - 23784
  • [2] High-entropy doping for high-voltage LiCoO2 with enhanced electrochemical performances
    Zeng, Sihan
    Zhu, Yiran
    Si, Juntao
    Liu, Huaibing
    Wang, Yida
    Hu, Yunyong
    Chen, Chunhua
    JOURNAL OF POWER SOURCES, 2025, 626
  • [3] High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery
    Zhang, Jing-Chao
    Liu, Zhe-Dong
    Zeng, Cui-Hua
    Luo, Jia-Wei
    Deng, Yi-Da
    Cui, Xiao-Ya
    Chen, Ya-Nan
    RARE METALS, 2022, 41 (12) : 3946 - 3956
  • [4] Weakened Solvation Structure Electrolytes Enable High-Voltage Graphite||LiCoO2 Batteries
    You, Haipeng
    Jiang, Jiaqing
    Chen, Long
    Li, Chunzhong
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (15): : 6696 - 6703
  • [5] Upcycling of spent LiCoO2 cathodes via nickel- and manganese-doping
    Zhang, Nianji
    Deng, Wenjing
    Xu, Zhixiao
    Wang, Xiaolei
    CARBON ENERGY, 2023, 5 (01)
  • [6] Multi-element synergistic doping enhances high-voltage performance of LiCoO2 via stabilizing internal and surface structures
    Sun, Weiyu
    Shi, Weichen
    Yang, Jilin
    Chen, Jingzhe
    Nie, Zixiao
    Zheng, Hong
    Cheng, Yonghong
    Xu, Xin
    ELECTROCHIMICA ACTA, 2024, 504
  • [7] New Insight into Bulk Structural Degradation of High-Voltage LiCoO2 at 4.55 V
    Lin, Weiguang
    Su, Wei
    Lin, Ting
    Wang, Shiyu
    Chen, Jing
    Gao, Ang
    Lyu, Yingchun
    Xiao, Dongdong
    Zhang, Qinghua
    Gu, Lin
    NANO LETTERS, 2024, 24 (24) : 7150 - 7157
  • [8] High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery
    Jing-Chao Zhang
    Zhe-Dong Liu
    Cui-Hua Zeng
    Jia-Wei Luo
    Yi-Da Deng
    Xiao-Ya Cui
    Ya-Nan Chen
    Rare Metals, 2022, 41 : 3946 - 3956
  • [9] A multifunctional zeolite film enables stable high-voltage operation of a LiCoO2 cathode
    Lin, Zezhou
    Ying, Yiran
    Xu, Zhihang
    Chen, Gao
    Gong, Xi
    Wang, Zehua
    Guan, Daqin
    Zhao, Leqi
    Yang, Mingyang
    Fan, Ke
    Liu, Tiancheng
    Li, Hao
    Zhang, Honglei
    Li, Huangxu
    Zhang, Xi
    Zhu, Ye
    Lu, Zhouguang
    Shao, Zongping
    Hou, Peiyu
    Huang, Haitao
    ENERGY & ENVIRONMENTAL SCIENCE, 2025, 18 (01) : 334 - 346
  • [10] A surface modification layer with cobalt aluminate inhibits 4.6 V high-voltage phase transition of LiCoO2
    Li, Zhi-Wei
    Jiang, Yun-Shan
    Xia, Yang
    Deng, Liang
    Sun, Mei-Yan
    Shao, Guang-Jie
    Zhao, Lei
    Yu, Fu-Da
    Wang, Zhen-Bo
    ELECTROCHIMICA ACTA, 2022, 428