Volterra-Composition Operators Acting on Sp Spaces and Weighted Zygmund Spaces

被引:0
作者
Al-Rawashdeh, Waleed [1 ]
机构
[1] Zarqa Univ, Dept Math, Zarqa 13110, Jordan
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2020年 / 17卷 / 02期
关键词
Weighted Zygmund Spaces; S-p spaces; Volterra operators; composition operators; bounded operators; compact operators; GENERALIZED COMPOSITION OPERATORS; BLOCH-SPACES; BERGMAN;
D O I
10.29020/nybg.ejpam.v17i2.5113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi be an analytic selfmap of the open unit disk D and g be an analytic function on D. The Volterra -type composition operators induced by the maps g and phi are defined as (I-g(phi) f ) ( z ) = integral(z)(0)f' ( phi ( zeta )) g (zeta) d zeta and (T-g(phi) f ) ( z ) = integral(z )(0)f ( phi (zeta)) g' (zeta)d zeta. For 1 <= p < infinity, S-p (D) is the space of all analytic functions on D whose first derivative f' lies in the Hardy space (H)(p) (D), endowed with the norm parallel to f parallel to(Sp) = |f(0)| + parallel to f 'parallel to(Hp). Let mu : (0 , 1] -> (0 , infinity) be a positive continuous function on D such that for z is an element of D we define mu (z) = mu (|z|). The weighted Zygmund space Z(mu)(D) is the space of all analytic functions f on D such that sup(z is an element of D) mu (z) | f" (z) | is finite. In this paper, we characterize the boundedness and compactness of the Volterra -type composition operators that act between S-p spaces and weighted Zygmund spaces.
引用
收藏
页码:931 / 944
页数:14
相关论文
共 25 条
[1]  
Al-Rawashdeh W., 2017, Int. J. Adv. Res. in Math., V10, P1
[2]  
Al-Rawashdeh W., 2017, New Zealand J. Mathematics, V47, P141
[3]  
Al-Rawashdeh W, 2013, BULL MATH ANAL APPL, V5, P54
[4]  
ALEMAN A., 1995, Complex Var. Theory Appl., V28, P149
[5]  
Cowen CarlC, 1995, Studies in Advanced Mathematics
[6]  
Demiriz S., 2022, Approximation Theory, Sequence Spaces and Applications, V1, P21
[7]  
Duren PL., 2004, BERGMAN SPACES, DOI DOI 10.1090/SURV/100
[8]  
Duren PL., 1970, THEORY HP SPACES
[9]  
Guo Z., 2022, J. Appl. Math. and Comp., V6, P332
[10]  
Kohr M, 2005, STUD U BABES-BOL MAT, V50, P129