Machine Learning-Based Etiologic Subtyping of Ischemic Stroke Using Circulating Exosomal microRNAs

被引:1
作者
Bang, Ji Hoon [1 ]
Kim, Eun Hee [2 ]
Kim, Hyung Jun [3 ]
Chung, Jong-Won [3 ]
Seo, Woo-Keun [3 ]
Kim, Gyeong-Moon [3 ]
Lee, Dong-Ho [4 ]
Kim, Heewon [1 ]
Bang, Oh Young [2 ,3 ,5 ]
机构
[1] Soongsil Univ, Coll IT, Global Sch Media, Seoul 06978, South Korea
[2] S&E Bio Inc, Seoul 05855, South Korea
[3] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Neurol, Seoul 06351, South Korea
[4] Calth Inc, Seongnam 13449, South Korea
[5] Sungkyunkwan Univ, Samsung Adv Inst Hlth Sci & Technol SAIHST, Dept Hlth Sci & Technol, Seoul 06351, South Korea
基金
新加坡国家研究基金会;
关键词
ischemic stroke; subtype; etiology; extracellular vesicle; microRNAs; machine learning;
D O I
10.3390/ijms25126761
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ischemic stroke is a major cause of mortality worldwide. Proper etiological subtyping of ischemic stroke is crucial for tailoring treatment strategies. This study explored the utility of circulating microRNAs encapsulated in extracellular vesicles (EV-miRNAs) to distinguish the following ischemic stroke subtypes: large artery atherosclerosis (LAA), cardioembolic stroke (CES), and small artery occlusion (SAO). Using next-generation sequencing (NGS) and machine-learning techniques, we identified differentially expressed miRNAs (DEMs) associated with each subtype. Through patient selection and diagnostic evaluation, a cohort of 70 patients with acute ischemic stroke was classified: 24 in the LAA group, 24 in the SAO group, and 22 in the CES group. Our findings revealed distinct EV-miRNA profiles among the groups, suggesting their potential as diagnostic markers. Machine-learning models, particularly logistic regression models, exhibited a high diagnostic accuracy of 92% for subtype discrimination. The collective influence of multiple miRNAs was more crucial than that of individual miRNAs. Additionally, bioinformatics analyses have elucidated the functional implications of DEMs in stroke pathophysiology, offering insights into the underlying mechanisms. Despite limitations like sample size constraints and retrospective design, our study underscores the promise of EV-miRNAs coupled with machine learning for ischemic stroke subtype classification. Further investigations are warranted to validate the clinical utility of the identified EV-miRNA biomarkers in stroke patients.
引用
收藏
页数:14
相关论文
共 37 条
  • [1] An evidence-based causative classification system for acute ischemic stroke
    Ay, H
    Furie, KL
    Singhal, A
    Smith, WS
    Sorensen, AG
    Koroshetz, WJ
    [J]. ANNALS OF NEUROLOGY, 2005, 58 (05) : 688 - 697
  • [2] Circulating Extracellular-Vesicle-Incorporated MicroRNAs as Potential Biomarkers for Ischemic Stroke in Patients With Cancer
    Bang, Oh Young
    Kim, Eun Hee
    Oh, Mi Jeong
    Yoo, Jaein
    Oh, Gyun Sik
    Chung, Jong-Won
    Seo, Woo-Keun
    Kim, Gyeong-Moon
    Ahn, Myung-Ju
    Yang, Seong Wook
    [J]. JOURNAL OF STROKE, 2023, 25 (02) : 251 - +
  • [3] Occurrence of Ischemic Stroke in Patients With Atrial Fibrillation Receiving Non-Vitamin K Oral Anticoagulants: Causes and Prevention Strategies
    Bang, Oh Young
    Park, Kyoung-Min
    Jeong, Dong Seop
    [J]. JOURNAL OF STROKE, 2023, 25 (02) : 199 - 213
  • [4] MicroRNAs: Target Recognition and Regulatory Functions
    Bartel, David P.
    [J]. CELL, 2009, 136 (02) : 215 - 233
  • [5] Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing
    Buschmann, Dominik
    Kirchner, Benedikt
    Hermann, Stefanie
    Maerte, Melanie
    Wurmser, Christine
    Brandes, Florian
    Kotschote, Stefan
    Bonin, Michael
    Steinlein, Ortrud K.
    Pfaffl, Michael W.
    Schelling, Gustav
    Reithmair, Marlene
    [J]. JOURNAL OF EXTRACELLULAR VESICLES, 2018, 7 (01)
  • [6] Stroke Genetics: Discovery, Insight Into Mechanisms, and Clinical Perspectives
    Debette, Stephanie
    Markus, Hugh S.
    [J]. CIRCULATION RESEARCH, 2022, 130 (08) : 1095 - 1111
  • [7] Comprehensive evaluation of methods for small extracellular vesicles separation from human plasma, urine and cell culture medium
    Dong, Liang
    Zieren, Richard C.
    Horie, Kengo
    Kim, Chi-Ju
    Mallick, Emily
    Jing, Yuezhou
    Feng, Mingxiao
    Kuczler, Morgan D.
    Green, Jordan
    Amend, Sarah R.
    Witwer, Kenneth W.
    de Reijke, Theo M.
    Cho, Yoon-Kyoung
    Pienta, Kenneth J.
    Xue, Wei
    [J]. JOURNAL OF EXTRACELLULAR VESICLES, 2020, 10 (02)
  • [8] Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients
    Endzelins, Edgars
    Berger, Andreas
    Melne, Vita
    Bajo-Santos, Cristina
    Sobolevska, Kristine
    Abols, Arturs
    Rodriguez, Marta
    Santare, Daiga
    Rudnickiha, Anastasija
    Lietuvietis, Vilnis
    Llorente, Alicia
    Line, Aija
    [J]. BMC CANCER, 2017, 17
  • [9] miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades
    Friedlaender, Marc R.
    Mackowiak, Sebastian D.
    Li, Na
    Chen, Wei
    Rajewsky, Nikolaus
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (01) : 37 - 52
  • [10] Comparison of Four Purification Methods on Serum Extracellular Vesicle Recovery, Size Distribution, and Proteomics
    Jimenez, Dianny Elizabeth
    Tahir, Muhammad
    Faheem, Muhammad
    dos Santos Alves, Wellington Bruno
    Correa, Barbara de Lucena
    de Andrade, Gabriel Rocha
    Larsen, Martin R.
    de Oliveira, Getulio Pereira
    Pereira, Rinaldo Wellerson
    [J]. PROTEOMES, 2023, 11 (03)