Satellite impact on astronomical observations based on the elliptical orbit model

被引:0
|
作者
Hu, Tianzhu [1 ,2 ]
Zhang, Yong [1 ,2 ,4 ]
Cui, Xiangqun [1 ,2 ]
Cao, Zihuang [4 ]
Huang, Kang [1 ,2 ,3 ]
Cai, Jingyi [1 ,2 ]
Li, Jun [1 ,2 ]
Zhou, Tong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Nanjing Inst Astron Opt & Technol, Nanjing 210042, Peoples R China
[2] Nanjing Inst Astron Opt & Technol, CAS Key Lab Astron Opt & Technol, Nanjing 210042, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Natl Astron Observ, Beijing 100101, Peoples R China
关键词
light pollution; methods: observational; space vehicles; telescopes; SPACE;
D O I
10.1051/0004-6361/202349048
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Space-based and ground-based telescopes have extensively documented the impact of satellites on astronomical observations. With the proliferation of satellite mega-constellation programmes, their influence on astronomical observations has become undeniable. Quantifying the impact of satellites on telescopes is crucial. To this end, we enhanced the circular orbit model for satellites and introduced a methodology based on two-line element orbit data. This involves constructing a satellite probability distribution model to evaluate the impact of satellites on telescopes. Using our method, we assessed the satellite impact on global grounded observatories. Our results indicate that the regions most severely affected by satellite interference at present are those near the equator, with latitudes of around +/- 50 and +/- 80 degrees experiencing the most significant impact from low-Earth-orbit satellites. Furthermore, we validated the reliability of our method using imaging data obtained from the focal surface acquisition camera of the LAMOST telescope.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Night sky photometry over Warsaw (Poland) evaluated simultaneously with surface-based and satellite-based cloud observations
    Kotarba, Andrzej Z.
    Chacewicz, Sara
    Zmudzka, Elwira
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2019, 235 : 95 - 107
  • [32] Impact of Short-Term Climate Variability on Volatile Organic Compounds Emissions Assessed Using OMI Satellite Formaldehyde Observations
    Stavrakou, T.
    Mueller, J. -F.
    Bauwens, M.
    De Smedt, I.
    Van Roozendael, M.
    Guenther, A.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (16) : 8681 - 8689
  • [33] Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations
    Cogan, A. J.
    Boesch, H.
    Parker, R. J.
    Feng, L.
    Palmer, P. I.
    Blavier, J. -F. L.
    Deutscher, N. M.
    Macatangay, R.
    Notholt, J.
    Roehl, C.
    Warneke, T.
    Wunch, D.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [34] A GPS-based method to model the plasma effects in VLBI observations
    Ros, E
    Marcaide, JM
    Guirado, JC
    Sardón, E
    Shapiro, II
    ASTRONOMY & ASTROPHYSICS, 2000, 356 (01) : 357 - 362
  • [35] A lightweight NO2-to-NOx conversion model for quantifying NOx emissions of point sources from NO2 satellite observations
    Meier, Sandro
    Koene, Erik F. M.
    Krol, Maarten
    Brunner, Dominik
    Damm, Alexander
    Kuhlmann, Gerrit
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2024, 24 (13) : 7667 - 7686
  • [36] Deep-Federated-Learning-Based Threat Detection Model for Extreme Satellite Communications
    Salim, Sara
    Moustafa, Nour
    Hassanian, Mohamed
    Ormod, David
    Slay, Jill
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (03) : 3853 - 3867
  • [37] Parametric resonance orbit analysis for irregular shaped asteroids based on the perturbed particle-linkage model
    Qian, Ying-Jing
    Si, Zhen
    Yang, Xiao-Dong
    Zhang, Wei
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2020, 20 (12)
  • [38] Estimation of biomass burning emission of NO2 and CO from 2019-2020 Australia fires based on satellite observations
    Wan, Nenghan
    Xiong, Xiaozhen
    Kluitenberg, Gerard J.
    Hutchinson, J. M. Shawn
    Aiken, Robert
    Zhao, Haidong
    Lin, Xiaomao
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (01) : 711 - 724
  • [39] Medium-Term Prediction of Relativistic Electron Fluxes in a Geostationary Orbit Using Machine Learning Methods Based on Observations of Solar Coronal Holes
    Myagkova, I. N.
    Shugai, Yu. S.
    Kalegaev, V. V.
    Kolmogorova, V. A.
    Dolenko, S. A.
    GEOMAGNETISM AND AERONOMY, 2020, 60 (03) : 279 - 288
  • [40] Quantifying urban, industrial, and background changes in NO2 during the COVID-19 lockdown period based on TROPOMI satellite observations
    Fioletov, Vitali
    McLinden, Chris A.
    Griffin, Debora
    Krotkov, Nickolay
    Liu, Fei
    Eskes, Henk
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (06) : 4201 - 4236