3D printed β-tricalcium phosphate versus synthetic bone mineral scaffolds: A comparative in vitro study of biocompatibility

被引:1
|
作者
Slavin, Blaire V. [1 ]
Mirsky, Nicholas A. [1 ]
Stauber, Zachary M. [1 ]
Nayak, Vasudev Vivekanand [2 ]
Smay, James E. [3 ]
Rivera, Cristobal F. [4 ]
Mijares, Dindo Q. [5 ]
Coelho, Paulo G. [1 ,6 ]
Cronstein, Bruce N. [7 ]
Tovar, Nick [8 ,9 ]
Witek, Lukasz [5 ,10 ,11 ]
机构
[1] Univ Miami, Miller Sch Med, Miami, FL USA
[2] Univ Miami, Miller Sch Med, Dept Biochem & Mol Biol, Miami, FL USA
[3] Oklahoma State Univ, Sch Mat Sci & Engn, Tulsa, OK USA
[4] New York Univ, Dept Surg & Cell Biol, Langone Med Ctr, Div Vasc & Endovasc Surg, New York, NY USA
[5] NYU Coll Dent, Biomat Div, New York, NY USA
[6] Univ Miami, Miller Sch Med, Div Plast Surg, DeWitt Daughtry Family Dept Surg, Miami, FL USA
[7] NYU Grossman Sch Med, Dept Med, New York, NY USA
[8] New York Univ, Dept Oral & Maxillofacial Surg, Langone Med Ctr, New York, NY USA
[9] New York Univ, Bellevue Hosp Ctr, New York, NY USA
[10] NYU Tandon Sch Engn, Dept Biomed Engn, Brooklyn, NY USA
[11] NYU Grossman Sch Med, Hansjorg Wyss Dept Plast Surg, New York, NY USA
关键词
3D printing; direct inkjet writing; bone regeneration; bioceramics; synthetic bone mineral; BIOACTIVE CERAMIC SCAFFOLDS; BIOCERAMIC SCAFFOLDS; DIPYRIDAMOLE; DEFECTS; REPAIR; BIOMATERIALS; REGENERATION; DEGRADATION; DEFICIENCY; THERAPY;
D O I
10.3233/BME-230214
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
BACKGROUND: beta-tricalcium phosphate (beta-TCP) has been successfully utilized as a 3D printed ceramic scaffold in the repair of non-healing bone defects; however, it requires the addition of growth factors to augment its regenerative capacity. Synthetic bone mineral (SBM) is a novel and extrudable carbonate hydroxyapatite with ionic substitutions known to facilitate bone healing. However, its efficacy as a 3D printed scaffold for hard tissue defect repair has not been explored. OBJECTIVE: To evaluate the biocompatibility and cell viability of human osteoprecursor (hOP) cells seeded on 3D printed SBM scaffolds via in vitro analysis. METHODS: SBM and beta-TCP scaffolds were fabricated via 3D printing and sintered at various temperatures. Scaffolds were then subject to qualitative cytotoxicity testing and cell proliferation experiments utilizing (hOP) cells. RESULTS: SBM scaffolds sintered at lower temperatures (600 degrees C and 700 degrees C) induced greater levels of acute cellular stress. At higher sintering temperatures (1100 degrees C), SBM scaffolds showed inferior cellular viability relative to beta-TCP scaffolds sintered to the same temperature (1100 degrees C). However, qualitative analysis suggested that beta-TCP presented no evidence of morphological change, while SBM 1100 degrees C showed few instances of acute cellular stress. CONCLUSION: Results demonstrate SBM may be a promising alternative to beta-TCP for potential applications in bone tissue engineering.
引用
收藏
页码:365 / 375
页数:11
相关论文
共 50 条
  • [21] Nano tantalum-coated 3D printed porous polylactic acid/beta-tricalcium phosphate scaffolds with enhanced biological properties for guided bone regeneration
    Liu, Tao
    Li, Binglin
    Chen, Gang
    Ye, Xiangling
    Zhang, Ying
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 221 : 371 - 380
  • [22] 3D printed calcium phosphate scaffolds with controlled release of osteogenic drugs for bone regeneration
    Sun, Huan
    Zhang, Chenxi
    Zhang, Boqing
    Song, Ping
    Xu, Xiujuan
    Gui, Xingyu
    Chen, Xinyue
    Lu, Gonggong
    Li, Xiang
    Liang, Jie
    Sun, Jianxun
    Jiang, Qing
    Zhou, Changchun
    Fan, Yujiang
    Zhou, Xuedong
    Zhang, Xingdong
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [23] Lignin-enriched tricalcium phosphate/sodium alginate 3D scaffolds for application in bone tissue regeneration
    Silva-Barroso, A. S.
    Cabral, Catia S. D.
    Ferreira, Paula
    Moreira, Andre F.
    Correiaa, Ilidio J.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 239
  • [24] Applications and progress of 3D printed bioceramic scaffolds in bone tissue repair and immune regulation
    Chen, Yasi
    Quan, Shaohao
    Huang, Sirui
    Liu, Wenhui
    Chen, Zhenyi
    Liu, Jinhao
    Li, Changwei
    Yang, Hui
    CERAMICS INTERNATIONAL, 2024, 50 (23) : 48891 - 48908
  • [25] Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds
    Bose, Susmita
    Bhattacharjee, Arjak
    Banerjee, Dishary
    Boccaccini, Aldo R.
    Bandyopadhyay, Amit
    ADDITIVE MANUFACTURING, 2021, 40
  • [26] In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration
    Boga, Joao C.
    Miguel, Sonia P.
    de Melo-Diogo, Duarte
    Mendonca, Antonio G.
    Louro, Ricardo O.
    Correia, Ilidio J.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 165 : 207 - 218
  • [27] Vascularized 3D printed scaffolds for promoting bone regeneration
    Yan, Yufei
    Chen, Hao
    Zhang, Hongbo
    Guo, Changjun
    Yang, Kai
    Chen, Kaizhe
    Cheng, Ruoyu
    Qian, Niandong
    Sandler, Niklas
    Zhang, Yu Shrike
    Shen, Haokai
    Qi, Jin
    Cui, Wenguo
    Deng, Lianfu
    BIOMATERIALS, 2019, 190 : 97 - 110
  • [28] 3D Printed Polyurethane Scaffolds for the Repair of Bone Defects
    Cooke, Megan E.
    Ramirez-GarciaLuna, Jose L.
    Rangel-Berridi, Karla
    Park, Hyeree
    Nazhat, Showan N.
    Weber, Michael H.
    Henderson, Janet E.
    Rosenzweig, Derek H.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [29] 3D printed magnetoactive nanocomposite scaffolds for bone regeneration
    Kaviani, Yeganeh
    Eslami, Hossein
    Ansari, Mojtaba
    Poursamar, Seyed Ali
    BIOMEDICAL MATERIALS, 2025, 20 (01)
  • [30] Controlling calcium and phosphate ion release of 3D printed bioactive ceramic scaffolds: An in vitro study
    Witek, Lukasz
    Shi, Yang
    Smay, James
    JOURNAL OF ADVANCED CERAMICS, 2017, 6 (02) : 157 - 164