Artificial neural network identified a 20-gene panel in predicting immunotherapy response and survival benefits after anti-PD1/PD-L1 treatment in glioblastoma patients

被引:0
作者
Wang, Yaning [1 ]
Wang, Zihao [1 ]
Guo, Xiaopeng [1 ]
Cao, Yaning [1 ]
Xing, Hao [1 ]
Wang, Yuekun [1 ]
Xing, Bing [1 ]
Wang, Yu [1 ]
Yao, Yong [1 ]
Ma, Wenbin [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Ctr Malignant Brain Tumors, Natl Glioma MDT Alliance, Beijing 100730, Peoples R China
来源
CANCER MEDICINE | 2024年 / 13卷 / 09期
基金
中国国家自然科学基金;
关键词
artificial neural network model; glioblastoma; immune checkpoint inhibitor; immunotherapy; IMMUNE CHECKPOINT INHIBITION; PROSTATE-CANCER; EXPRESSION; BIOMARKERS; DIAGNOSIS; TUMORS; MUTATIONS; BLOCKADE; RECEPTOR; IMPACT;
D O I
10.1002/cam4.7218
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Immune checkpoint inhibitors (ICIs) are a promising immunotherapy approach, but glioblastoma clinical trials have not yielded satisfactory results. Objective To screen glioblastoma patients who may benefit from immunotherapy. Methods Eighty-one patients receiving anti-PD1/PD-L1 treatment from a large-scale clinical trial and 364 patients without immunotherapy from The Cancer Genome Atlas (TCGA) were included. Patients in the ICI-treated cohort were divided into responders and nonresponders according to overall survival (OS), and the most critical responder-relevant features were screened using random forest (RF). We constructed an artificial neural network (ANN) model and verified its predictive value with immunotherapy response and OS. Results We defined two groups of ICI-treated glioblastoma patients with large differences in survival benefits as nonresponders (OS <= 6 months, n = 18) and responders (OS >= 17 months, n = 8). No differentially mutated genes were observed between responders and nonresponders. We performed RF analysis to select the most critical responder-relevant features and developed an ANN with 20 input variables, five hidden neurons and one output neuron. Receiver operating characteristic analysis and the DeLong test demonstrated that the ANN had the best performance in predicting responders, with an AUC of 0.97. Survival analysis indicated that ANN-predicted responders had significantly better OS rates than nonresponders. Conclusion The 20-gene panel developed by the ANN could be a promising biomarker for predicting immunotherapy response and prognostic benefits in ICI-treated GBM patients and may guide oncologists to accurately select potential responders for the preferential use of ICIs.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Tumor mutational load predicts survival after immunotherapy across multiple cancer types [J].
Samstein, Robert M. ;
Lee, Chung-Han ;
Shoushtari, Alexander N. ;
Hellmann, Matthew D. ;
Shen, Ronglai ;
Janjigian, Yelena Y. ;
Barron, David A. ;
Zehir, Ahmet ;
Jordan, Emmet J. ;
Omuro, Antonio ;
Kaley, Thomas J. ;
Kendall, Sviatoslav M. ;
Motzer, Robert J. ;
Hakimi, A. Ari ;
Voss, Martin H. ;
Russo, Paul ;
Rosenberg, Jonathan ;
Iyer, Gopa ;
Bochner, Bernard H. ;
Bajorin, Dean F. ;
Al-Ahmadie, Hikmat A. ;
Chaft, Jamie E. ;
Rudin, Charles M. ;
Riely, Gregory J. ;
Baxi, Shrujal ;
Ho, Alan L. ;
Wong, Richard J. ;
Pfister, David G. ;
Wolchok, Jedd D. ;
Barker, Christopher A. ;
Gutin, Philip H. ;
Brennan, Cameron W. ;
Tabar, Viviane ;
Mellinghoff, Ingo K. ;
DeAngelis, Lisa M. ;
Ariyan, Charlotte E. ;
Lee, Nancy ;
Tap, William D. ;
Gounder, Mrinal M. ;
D'Angelo, Sandra P. ;
Saltz, Leonard ;
Stadler, Zsofia K. ;
Scher, Howard I. ;
Baselga, Jose ;
Razavi, Pedram ;
Klebanoff, Christopher A. ;
Yaeger, Rona ;
Segal, Neil H. ;
Ku, Geoffrey Y. ;
DeMatteo, Ronald P. .
NATURE GENETICS, 2019, 51 (02) :202-+
[42]  
Sepandi Mojtaba, 2018, Asian Pac J Cancer Prev, V19, P1017, DOI 10.22034/APJCP.2018.19.4.1017
[43]   ARTIFICIAL NEURAL NETWORKS IN THE DIAGNOSIS AND PROGNOSIS OF PROSTATE-CANCER - A PILOT-STUDY [J].
SNOW, PB ;
SMITH, DS ;
CATALONA, WJ .
JOURNAL OF UROLOGY, 1994, 152 (05) :1923-1926
[44]   Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma A Randomized Clinical Trial [J].
Stupp, Roger ;
Taillibert, Sophie ;
Kanner, Andrew ;
Read, William ;
Steinberg, David M. ;
Lhermitte, Benoit ;
Toms, Steven ;
Idbaih, Ahmed ;
Ahluwalia, Manmeet S. ;
Fink, Karen ;
Di Meco, Francesco ;
Lieberman, Frank ;
Zhu, Jay-Jiguang ;
Stragliotto, Giuseppe ;
Tran, David D. ;
Brem, Steven ;
Hottinger, Andreas F. ;
Kirson, Eilon D. ;
Lavy-Shahaf, Gitit ;
Weinberg, Uri ;
Kim, Chae-Yong ;
Paek, Sun-Ha ;
Nicholas, Garth ;
Burna, Jordi ;
Hirte, Hal ;
Weller, Michael ;
Palti, Yoram ;
Hegi, Monika ;
Ram, Zvi .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (23) :2306-2316
[45]   Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma [J].
Wang, Xin ;
Guo, Gaochao ;
Guan, Hui ;
Yu, Yang ;
Lu, Jie ;
Yu, Jinming .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2019, 38 (1)
[46]   Immune checkpoint therapy in liver cancer [J].
Xu, Feng ;
Jin, Tianqiang ;
Zhu, Yuwen ;
Dai, Chaoliu .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2018, 37
[47]   Performance evaluation of radiologists with artificial neural network for differential diagnosis of intra-axial cerebral tumors on MR images [J].
Yamashita, K. ;
Yoshiura, T. ;
Arimura, H. ;
Mihara, F. ;
Noguchi, T. ;
Hiwatashi, A. ;
Togao, O. ;
Yamashita, Y. ;
Shono, T. ;
Kumazawa, S. ;
Higashida, Y. ;
Honda, H. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2008, 29 (06) :1153-1158
[48]   PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: clinical studies, challenges and potential [J].
Yang, Tianrui ;
Kong, Ziren ;
Ma, Wenbin .
HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2021, 17 (02) :546-553
[49]   Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma [J].
Zhao, Junfei ;
Chen, Andrew X. ;
Gartrell, Robyn D. ;
Silverman, Andrew M. ;
Aparicio, Luis ;
Chu, Tim ;
Bordbar, Darius ;
Shan, David ;
Samanamud, Jorge ;
Mahajan, Aayushi ;
Filip, Ioan ;
Orenbuch, Rose ;
Goetz, Morgan ;
Yamaguchi, Jonathan T. ;
Cloney, Michael ;
Horbinski, Craig ;
Lukas, Rimas V. ;
Raizer, Jeffrey ;
Rae, Ali I. ;
Yuan, Jinzhou ;
Canoll, Peter ;
Bruce, Jeffrey N. ;
Saenger, Yvonne M. ;
Sims, Peter ;
Iwamoto, Fabio M. ;
Sonabend, Adam M. ;
Rabadan, Raul .
NATURE MEDICINE, 2019, 25 (03) :462-+
[50]   Progress and challenges of immunotherapy in triple-negative breast cancer [J].
Zhu, Yinxing ;
Zhu, Xuedan ;
Tang, Cuiju ;
Guan, Xiaoxiang ;
Zhang, Wenwen .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2021, 1876 (02)