Artificial neural network identified a 20-gene panel in predicting immunotherapy response and survival benefits after anti-PD1/PD-L1 treatment in glioblastoma patients

被引:0
作者
Wang, Yaning [1 ]
Wang, Zihao [1 ]
Guo, Xiaopeng [1 ]
Cao, Yaning [1 ]
Xing, Hao [1 ]
Wang, Yuekun [1 ]
Xing, Bing [1 ]
Wang, Yu [1 ]
Yao, Yong [1 ]
Ma, Wenbin [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Ctr Malignant Brain Tumors, Natl Glioma MDT Alliance, Beijing 100730, Peoples R China
来源
CANCER MEDICINE | 2024年 / 13卷 / 09期
基金
中国国家自然科学基金;
关键词
artificial neural network model; glioblastoma; immune checkpoint inhibitor; immunotherapy; IMMUNE CHECKPOINT INHIBITION; PROSTATE-CANCER; EXPRESSION; BIOMARKERS; DIAGNOSIS; TUMORS; MUTATIONS; BLOCKADE; RECEPTOR; IMPACT;
D O I
10.1002/cam4.7218
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Immune checkpoint inhibitors (ICIs) are a promising immunotherapy approach, but glioblastoma clinical trials have not yielded satisfactory results. Objective To screen glioblastoma patients who may benefit from immunotherapy. Methods Eighty-one patients receiving anti-PD1/PD-L1 treatment from a large-scale clinical trial and 364 patients without immunotherapy from The Cancer Genome Atlas (TCGA) were included. Patients in the ICI-treated cohort were divided into responders and nonresponders according to overall survival (OS), and the most critical responder-relevant features were screened using random forest (RF). We constructed an artificial neural network (ANN) model and verified its predictive value with immunotherapy response and OS. Results We defined two groups of ICI-treated glioblastoma patients with large differences in survival benefits as nonresponders (OS <= 6 months, n = 18) and responders (OS >= 17 months, n = 8). No differentially mutated genes were observed between responders and nonresponders. We performed RF analysis to select the most critical responder-relevant features and developed an ANN with 20 input variables, five hidden neurons and one output neuron. Receiver operating characteristic analysis and the DeLong test demonstrated that the ANN had the best performance in predicting responders, with an AUC of 0.97. Survival analysis indicated that ANN-predicted responders had significantly better OS rates than nonresponders. Conclusion The 20-gene panel developed by the ANN could be a promising biomarker for predicting immunotherapy response and prognostic benefits in ICI-treated GBM patients and may guide oncologists to accurately select potential responders for the preferential use of ICIs.
引用
收藏
页数:10
相关论文
共 50 条
[31]  
2-I
[32]   Neural network analysis of combined conventional and experimental prognostic markers in prostate cancer: a pilot study [J].
Naguib, RNG ;
Robinson, MC ;
Neal, DE ;
Hamdy, FC .
BRITISH JOURNAL OF CANCER, 1998, 78 (02) :246-250
[33]   PD-L1 expression and prognostic impact in glioblastoma [J].
Nduom, Edjah K. ;
Wei, Jun ;
Yaghi, Nasser K. ;
Huang, Neal ;
Kong, Ling-Yuan ;
Gabrusiewicz, Konrad ;
Ling, Xiaoyang ;
Zhou, Shouhao ;
Ivan, Cristina ;
Chen, Jie Qing ;
Burks, Jared K. ;
Fuller, Greg N. ;
Calin, George A. ;
Conrad, Charles A. ;
Creasy, Caitlin ;
Ritthipichai, Krit ;
Radvanyi, Laszlo ;
Heimberger, Amy B. .
NEURO-ONCOLOGY, 2016, 18 (02) :195-205
[34]   CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017 [J].
Ostrom, Quinn T. ;
Patil, Nirav ;
Cioffi, Gino ;
Waite, Kristin ;
Kruchko, Carol ;
Barnholtz-Sloan, Jill S. .
NEURO-ONCOLOGY, 2020, 22 :1-42
[35]   Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy [J].
Peng, Weiyi ;
Chen, Jie Qing ;
Liu, Chengwen ;
Malu, Shruti ;
Creasy, Caitlin ;
Tetzlaff, Michael T. ;
Xu, Chunyu ;
McKenzie, Jodi A. ;
Zhang, Chunlei ;
Liang, Xiaoxuan ;
Williams, Leila J. ;
Deng, Wanleng ;
Chen, Guo ;
Mbofung, Rina ;
Lazar, Alexander J. ;
Torres-Cabala, Carlos A. ;
Cooper, Zachary A. ;
Chen, Pei-Ling ;
Tieu, Trang N. ;
Spranger, Stefani ;
Yu, Xiaoxing ;
Bernatchez, Chantale ;
Forget, Marie-Andree ;
Haymaker, Cara ;
Amaria, Rodabe ;
McQuade, Jennifer L. ;
Glitza, Isabella C. ;
Cascone, Tina ;
Li, Haiyan S. ;
Kwong, Lawrence N. ;
Heffernan, Timothy P. ;
Hu, Jianhua ;
Bassett, Roland L. ;
Bosenberg, Marcus W. ;
Woodman, Scott E. ;
Overwijk, Willem W. ;
Lizee, Gregory ;
Roszik, Jason ;
Gajewski, Thomas F. ;
Wargo, Jennifer A. ;
Gershenwald, Jeffrey E. ;
Radvanyi, Laszlo ;
Davies, Michael A. ;
Hwu, Patrick .
CANCER DISCOVERY, 2016, 6 (02) :202-216
[36]   Improved grading and survival prediction of human astrocytic brain tumors by artificial neural network analysis of gene expression microarray data [J].
Petalidis, Lawrence P. ;
Oulas, Anastasis ;
Backlund, Magnus ;
Wayland, Matthew T. ;
Liu, Lu ;
Plant, Karen ;
Happerfield, Lisa ;
Freeman, Tom C. ;
Poirazi, Panayiota ;
Collins, V. Peter .
MOLECULAR CANCER THERAPEUTICS, 2008, 7 (05) :1013-1024
[37]   Application of preoperative artificial neural network based on blood biomarkers and clinicopathological parameters for predicting long-term survival of patients with gastric cancer [J].
Que, Si-Jin ;
Chen, Qi-Yue ;
Qing-Zhong ;
Liu, Zhi-Yu ;
Wang, Jia-Bin ;
Lin, Jian-Xian ;
Lu, Jun ;
Cao, Long-Long ;
Lin, Mi ;
Tu, Ru-Hong ;
Huang, Ze-Ning ;
Lin, Ju-Li ;
Zheng, Hua-Long ;
Li, Ping ;
Zheng, Chao-Hui ;
Huang, Chang-Ming ;
Xie, Jian-Wei .
WORLD JOURNAL OF GASTROENTEROLOGY, 2019, 25 (43) :6451-6464
[38]   Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma The CheckMate 143 Phase 3 Randomized Clinical Trial [J].
Reardon, David A. ;
Brandes, Alba A. ;
Omuro, Antonio ;
Mulholland, Paul ;
Lim, Michael ;
Wick, Antje ;
Baehring, Joachim ;
Ahluwalia, Manmeet S. ;
Roth, Patrick ;
Baehr, Oliver ;
Phuphanich, Surasak ;
Sepulveda, Juan Manuel ;
De Souza, Paul ;
Sahebjam, Solmaz ;
Carleton, Michael ;
Tatsuoka, Kay ;
Taitt, Corina ;
Zwirtes, Ricardo ;
Sampson, John ;
Weller, Michael .
JAMA ONCOLOGY, 2020, 6 (07) :1003-1010
[39]   A deep learning framework for neuroscience [J].
Richards, Blake A. ;
Lillicrap, Timothy P. ;
Beaudoin, Philippe ;
Bengio, Yoshua ;
Bogacz, Rafal ;
Christensen, Amelia ;
Clopath, Claudia ;
Costa, Rui Ponte ;
de Berker, Archy ;
Ganguli, Surya ;
Gillon, Colleen J. ;
Hafner, Danijar ;
Kepecs, Adam ;
Kriegeskorte, Nikolaus ;
Latham, Peter ;
Lindsay, Grace W. ;
Miller, Kenneth D. ;
Naud, Richard ;
Pack, Christopher C. ;
Poirazi, Panayiota ;
Roelfsema, Pieter ;
Sacramento, Joao ;
Saxe, Andrew ;
Scellier, Benjamin ;
Schapiro, Anna C. ;
Senn, Walter ;
Wayne, Greg ;
Yamins, Daniel ;
Zenke, Friedemann ;
Zylberberg, Joel ;
Therien, Denis ;
Kording, Konrad P. .
NATURE NEUROSCIENCE, 2019, 22 (11) :1761-1770
[40]   Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer [J].
Rizvi, Naiyer A. ;
Hellmann, Matthew D. ;
Snyder, Alexandra ;
Kvistborg, Pia ;
Makarov, Vladimir ;
Havel, Jonathan J. ;
Lee, William ;
Yuan, Jianda ;
Wong, Phillip ;
Ho, Teresa S. ;
Miller, Martin L. ;
Rekhtman, Natasha ;
Moreira, Andre L. ;
Ibrahim, Fawzia ;
Bruggeman, Cameron ;
Gasmi, Billel ;
Zappasodi, Roberta ;
Maeda, Yuka ;
Sander, Chris ;
Garon, Edward B. ;
Merghoub, Taha ;
Wolchok, Jedd D. ;
Schumacher, Ton N. ;
Chan, Timothy A. .
SCIENCE, 2015, 348 (6230) :124-128