Artificial neural network identified a 20-gene panel in predicting immunotherapy response and survival benefits after anti-PD1/PD-L1 treatment in glioblastoma patients

被引:0
作者
Wang, Yaning [1 ]
Wang, Zihao [1 ]
Guo, Xiaopeng [1 ]
Cao, Yaning [1 ]
Xing, Hao [1 ]
Wang, Yuekun [1 ]
Xing, Bing [1 ]
Wang, Yu [1 ]
Yao, Yong [1 ]
Ma, Wenbin [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Ctr Malignant Brain Tumors, Natl Glioma MDT Alliance, Beijing 100730, Peoples R China
来源
CANCER MEDICINE | 2024年 / 13卷 / 09期
基金
中国国家自然科学基金;
关键词
artificial neural network model; glioblastoma; immune checkpoint inhibitor; immunotherapy; IMMUNE CHECKPOINT INHIBITION; PROSTATE-CANCER; EXPRESSION; BIOMARKERS; DIAGNOSIS; TUMORS; MUTATIONS; BLOCKADE; RECEPTOR; IMPACT;
D O I
10.1002/cam4.7218
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Immune checkpoint inhibitors (ICIs) are a promising immunotherapy approach, but glioblastoma clinical trials have not yielded satisfactory results. Objective To screen glioblastoma patients who may benefit from immunotherapy. Methods Eighty-one patients receiving anti-PD1/PD-L1 treatment from a large-scale clinical trial and 364 patients without immunotherapy from The Cancer Genome Atlas (TCGA) were included. Patients in the ICI-treated cohort were divided into responders and nonresponders according to overall survival (OS), and the most critical responder-relevant features were screened using random forest (RF). We constructed an artificial neural network (ANN) model and verified its predictive value with immunotherapy response and OS. Results We defined two groups of ICI-treated glioblastoma patients with large differences in survival benefits as nonresponders (OS <= 6 months, n = 18) and responders (OS >= 17 months, n = 8). No differentially mutated genes were observed between responders and nonresponders. We performed RF analysis to select the most critical responder-relevant features and developed an ANN with 20 input variables, five hidden neurons and one output neuron. Receiver operating characteristic analysis and the DeLong test demonstrated that the ANN had the best performance in predicting responders, with an AUC of 0.97. Survival analysis indicated that ANN-predicted responders had significantly better OS rates than nonresponders. Conclusion The 20-gene panel developed by the ANN could be a promising biomarker for predicting immunotherapy response and prognostic benefits in ICI-treated GBM patients and may guide oncologists to accurately select potential responders for the preferential use of ICIs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma
    Berghoff, Anna Sophie
    Kiesel, Barbara
    Widhalm, Georg
    Rajky, Orsolya
    Ricken, Gerda
    Woehrer, Adelheid
    Dieckmann, Karin
    Filipits, Martin
    Brandstetter, Anita
    Weller, Michael
    Kurscheid, Sebastian
    Hegi, Monika E.
    Zielinski, Christoph C.
    Marosi, Christine
    Hainfellner, Johannes A.
    Preusser, Matthias
    Wick, Wolfgang
    [J]. NEURO-ONCOLOGY, 2015, 17 (08) : 1064 - 1075
  • [2] Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (NSCLC)
    Bodor, J. Nicholas
    Boumber, Yanis
    Borghaei, Hossein
    [J]. CANCER, 2020, 126 (02) : 260 - 270
  • [3] Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency
    Bouffet, Eric
    Larouche, Valerie
    Campbell, Brittany B.
    Merico, Daniele
    de Borja, Richard
    Aronson, Melyssa
    Durno, Carol
    Krueger, Joerg
    Cabric, Vanja
    Ramaswamy, Vijay
    Zhukova, Nataliya
    Mason, Gary
    Farah, Roula
    Afzal, Samina
    Yalon, Michal
    Rechavi, Gideon
    Magimairajan, Vanan
    Walsh, Michael F.
    Constantini, Shlomi
    Dvir, Rina
    Elhasid, Ronit
    Reddy, Alyssa
    Osborn, Michael
    Sullivan, Michael
    Hansford, Jordan
    Dodgshun, Andrew
    Klauber-Demore, Nancy
    Peterson, Lindsay
    Patel, Sunil
    Lindhorst, Scott
    Atkinson, Jeffrey
    Cohen, Zane
    Laframboise, Rachel
    Dirks, Peter
    Taylor, Michael
    Malkin, David
    Albrecht, Steffen
    Dudley, Roy W. R.
    Jabado, Nada
    Hawkins, Cynthia E.
    Shlien, Adam
    Tabori, Uri
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (19) : 2206 - +
  • [4] Integrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden
    Budczies, Jan
    Seidel, Anja
    Christopoulos, Petros
    Endris, Volker
    Kloor, Matthias
    Gyorffy, Balazs
    Seliger, Barbara
    Schirmacher, Peter
    Stenzinger, Albrecht
    Denkert, Carsten
    [J]. ONCOIMMUNOLOGY, 2018, 7 (12):
  • [5] Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate
    Bunse, Lukas
    Pusch, Stefan
    Bunse, Theresa
    Sahm, Felix
    Sanghvi, Khwab
    Friedrich, Mirco
    Alansary, Dalia
    Sonner, Jana K.
    Green, Edward
    Deumelandt, Katrin
    Kilian, Michael
    Neftel, Cyril
    Uhlig, Stefanie
    Kessler, Tobias
    von Landenberg, Anna
    Berghoff, Anna S.
    Marsh, Kelly
    Steadman, Mya
    Zhu, Dongwei
    Nicolay, Brandon
    Wiestler, Benedikt
    Breckwoldt, Michael O.
    Al-Ali, Ruslan
    Karcher-Bausch, Simone
    Bozza, Matthias
    Oezen, Iris
    Kramer, Magdalena
    Meyer, Jochen
    Habel, Antje
    Eisel, Jessica
    Poschet, Gernot
    Weller, Michael
    Preusser, Matthias
    Nadji-Ohl, Minou
    Thon, Niklas
    Burger, Michael C.
    Harter, Patrick N.
    Ratliff, Miriam
    Harbottle, Richard
    Benner, Axel
    Schrimpf, Daniel
    Okun, Jurgen
    Herold-Mende, Christel
    Turcan, Sevin
    Kaulfuss, Stefan
    Hess-Stumpp, Holger
    Bieback, Karen
    Cahill, Daniel P.
    Plate, Karl H.
    Haenggi, Daniel
    [J]. NATURE MEDICINE, 2018, 24 (08) : 1192 - +
  • [6] Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade
    Charoentong, Pornpimol
    Finotello, Francesca
    Angelova, Mihaela
    Mayer, Clemens
    Efremova, Mirjana
    Rieder, Dietmar
    Hackl, Hubert
    Trajanoski, Zlatko
    [J]. CELL REPORTS, 2017, 18 (01): : 248 - 262
  • [7] Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology
    Cheng, Donavan T.
    Mitchell, Talia N.
    Zehir, Ahmet
    Shah, Ronak H.
    Benayed, Ryma
    Syed, Aijazuddin
    Chandramohan, Raghu
    Liu, Zhen Yu
    Won, Helen H.
    Scott, Sasinya N.
    Brannon, A. Rose
    O'Reilly, Catherine
    Sadowska, Justyna
    Casanova, Jacklyn
    Yannes, Angela
    Hechtman, Jaclyn F.
    Yao, Jinjuan
    Song, Wei
    Ross, Dara S.
    Oultache, Alifya
    Dogan, Snjezana
    Borsu, Laetitia
    Hameed, Meera
    Nafa, Khedoudja
    Arcila, Maria E.
    Ladanyi, Marc
    Berger, Michael F.
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2015, 17 (03) : 251 - 264
  • [8] Immune Checkpoint Inhibition in Colorectal Cancer: Microsatellite Instability and Beyond
    Cohen, Romain
    Rousseau, Benoit
    Vidal, Joana
    Colle, Raphael
    Diaz, Luis A., Jr.
    Andre, Thierry
    [J]. TARGETED ONCOLOGY, 2020, 15 (01) : 11 - 24
  • [9] Nivolumab and pembrolizumab as immune-modulating monoclonal antibodies targeting the PD-1 receptor to treat melanoma
    Faghfuri, Elnaz
    Faramarzi, Mohammad Ali
    Nikfar, Shekoufeh
    Abdollahi, Mohammad
    [J]. EXPERT REVIEW OF ANTICANCER THERAPY, 2015, 15 (09) : 981 - 993
  • [10] DNA methylation-based prediction of response to immune checkpoint inhibition in metastatic melanoma
    Filipski, Katharina
    Scherer, Michael
    Zeiner, Kim N.
    Bucher, Andreas
    Kleemann, Johannes
    Jurmeister, Philipp
    Hartung, Tabea, I
    Meissner, Markus
    Plate, Karl H.
    Fenton, Tim R.
    Walter, Jorn
    Tierling, Sascha
    Schilling, Bastian
    Zeiner, Pia S.
    Harter, Patrick N.
    [J]. JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2021, 9 (07)