Unsupervised Anomaly Detection in Tongue Diagnosis with Semantic Guided Denoising Diffusion Models

被引:0
|
作者
Huang, Hongbo [1 ]
Yan, Xiaoxu [1 ]
Xu, Longfei [1 ]
Zheng, Yaolin [1 ]
Huang, Linkai [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Beijing, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT I, ICIC 2024 | 2024年 / 14881卷
基金
中国国家自然科学基金;
关键词
Diffusion models; Anomaly detection; Tongue diagnosis;
D O I
10.1007/978-981-97-5689-6_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tongue diagnosis is one of the core diagnostic methods in Traditional Chinese Medicine (TCM), primarily involving the visual inspection of tongue images to assess a patient's health status. However, the subjectivity and environmental differences in tongue diagnosis may lead to potential errors and limitations. In this paper, we introduce an unsupervised tongue coating anomaly detection model based on diffusion models, aiming to address the limitations of traditional supervised learning and existing anomaly detection models. Our approach combines the semantic classification ability of the cross-attention module within the diffusion model with score-based conditional guidance to achieve high-quality image reconstruction and precise identification of discriminative regions. Experimental results have demonstrated that our anomaly detection model exhibits state-of-the-art performance, surpassing the accuracy of existing models.
引用
收藏
页码:453 / 465
页数:13
相关论文
共 50 条
  • [31] Face Morphing Attack Detection with Denoising Diffusion Probabilistic Models
    Ivanovska, Marija
    Struc, Vitomir
    2023 11TH INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS, IWBF, 2023,
  • [32] Dual-Path Reconstruction Guided Segmentation Network for Unsupervised Anomaly Detection and Localization
    Xiao, Junwei
    Deng, Lei
    Chen, Zhixiang
    Li, Xiu
    Chen, Baohua
    Yin, Hanxi
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [33] Unsupervised anomaly detection in peripheral venous pressure signals with hidden Markov models
    Abul Hayat, Md
    Wu, Jingxian
    Bonasso, Patrick C.
    Sexton, Kevin W.
    Jensen, Hanna K.
    Dassinger, Melvin S.
    Jensen, Morten O.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 62 (62)
  • [34] Image-Conditioned Diffusion Models for Medical Anomaly Detection
    Baugh, Matthew
    Reynaud, Hadrien
    Marimont, Sergio Naval
    Cechnicka, Sarah
    Mueller, Johanna P.
    Tarroni, Giacomo
    Kainz, Bernhard
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2024, 2025, 15167 : 117 - 127
  • [35] Learning Diffusion Models for Multi-view Anomaly Detection
    Liu, Chieh
    Chu, Yu-Min
    Hsieh, Ting-, I
    Chen, Hwann-Tzong
    Liu, Tyng-Luh
    COMPUTER VISION - ECCV 2024, PT XXXIII, 2025, 15091 : 328 - 345
  • [36] Unsupervised Anomaly Detection for Improving Adversarial Robustness of 3D Object Detection Models
    Cai, Mumuxin
    Wang, Xupeng
    Sohel, Ferdous
    Lei, Hang
    ELECTRONICS, 2025, 14 (02):
  • [37] Mixed noise-guided mutual constraint framework for unsupervised anomaly detection in smart industries
    Zhao, Qing
    Wang, Yan
    Lin, Yuxuan
    Yan, Shaoqi
    Song, Wei
    Wang, Boyang
    Huang, Jun
    Chang, Yang
    Qi, Lizhe
    Zhang, Wenqiang
    COMPUTER COMMUNICATIONS, 2024, 216 : 45 - 53
  • [38] VADiffusion: Compressed Domain Information Guided Conditional Diffusion for Video Anomaly Detection
    Liu, Hao
    He, Lijun
    Zhang, Miao
    Li, Fan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8398 - 8411
  • [39] Anomaly detection for industrial quality assurance: A comparative evaluation of unsupervised deep learning models
    Zipfel, Justus
    Verworner, Felix
    Fischer, Marco
    Wieland, Uwe
    Kraus, Mathias
    Zschech, Patrick
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 177
  • [40] Design and Evaluation of Unsupervised Machine Learning Models for Anomaly Detection in Streaming Cybersecurity Logs
    Sanchez-Zas, Carmen
    Larriva-Novo, Xavier
    Villagra, Victor A.
    Rodrigo, Mario Sanz
    Moreno, Jose Ignacio
    MATHEMATICS, 2022, 10 (21)