Unsupervised Anomaly Detection in Tongue Diagnosis with Semantic Guided Denoising Diffusion Models

被引:0
|
作者
Huang, Hongbo [1 ]
Yan, Xiaoxu [1 ]
Xu, Longfei [1 ]
Zheng, Yaolin [1 ]
Huang, Linkai [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Beijing, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT I, ICIC 2024 | 2024年 / 14881卷
基金
中国国家自然科学基金;
关键词
Diffusion models; Anomaly detection; Tongue diagnosis;
D O I
10.1007/978-981-97-5689-6_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tongue diagnosis is one of the core diagnostic methods in Traditional Chinese Medicine (TCM), primarily involving the visual inspection of tongue images to assess a patient's health status. However, the subjectivity and environmental differences in tongue diagnosis may lead to potential errors and limitations. In this paper, we introduce an unsupervised tongue coating anomaly detection model based on diffusion models, aiming to address the limitations of traditional supervised learning and existing anomaly detection models. Our approach combines the semantic classification ability of the cross-attention module within the diffusion model with score-based conditional guidance to achieve high-quality image reconstruction and precise identification of discriminative regions. Experimental results have demonstrated that our anomaly detection model exhibits state-of-the-art performance, surpassing the accuracy of existing models.
引用
收藏
页码:453 / 465
页数:13
相关论文
共 50 条
  • [1] Unsupervised EEG-Based Seizure Anomaly Detection with Denoising Diffusion Probabilistic Models
    Wang, Jiale
    Sun, Mengxue
    Huang, Wenhui
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2024, 34 (09)
  • [2] Unsupervised anomaly detection for Nuclear Power Plants based on Denoising Diffusion Probabilistic Models
    Liu, Shiqiao
    Zhu, Zifei
    Zhao, Xinwen
    Wang, Yangguang
    Sun, Xiang
    Yu, Lei
    PROGRESS IN NUCLEAR ENERGY, 2025, 178
  • [3] Unsupervised industrial anomaly detection with diffusion models
    Xu, Haohao
    Xu, Shuchang
    Yang, Wenzhen
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 97
  • [4] Unsupervised Detection of Fetal Brain Anomalies Using Denoising Diffusion Models
    Olsen, Markus Ditlev Sjogren
    Ambsdorf, Jakob
    Lin, Manxi
    Taksoe-Vester, Caroline
    Svendsen, Morten Bo Sondergaard
    Christensen, Anders Nymark
    Nielsen, Mads
    Tolsgaard, Martin Gronnebaek
    Feragen, Aasa
    Pegios, Paraskevas
    SIMPLIFYING MEDICAL ULTRASOUND, ASMUS 2024, 2025, 15186 : 209 - 219
  • [5] DiffTAD: Denoising diffusion probabilistic models for vehicle trajectory anomaly detection
    Li, Chaoneng
    Feng, Guanwen
    Li, Yunan
    Liu, Ruyi
    Miao, Qiguang
    Chang, Liang
    KNOWLEDGE-BASED SYSTEMS, 2024, 286
  • [6] EXPLORING DIFFUSION MODELS FOR UNSUPERVISED VIDEO ANOMALY DETECTION
    Tur, Anil Osman
    Dall'Asen, Nicola
    Beyan, Cigdem
    Ricci, Elisa
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2540 - 2544
  • [7] Denoising diffusion model with adversarial learning for unsupervised anomaly detection on brain MRI images
    Yu, Jongmin
    Oh, Hyeontaek
    Lee, Younkwan
    Yang, Jinhong
    PATTERN RECOGNITION LETTERS, 2024, 186 : 229 - 235
  • [8] Denoising Autoencoders for Unsupervised Anomaly Detection in Brain MRI
    Kascenas, Antanas
    Pugeault, Nicolas
    O'Neil, Alison Q.
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 653 - 664
  • [9] Diffusion Models for Medical Anomaly Detection
    Wolleb, Julia
    Bieder, Florentin
    Sandkuhler, Robin
    Cattin, Philippe C.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 35 - 45
  • [10] Controlled graph neural networks with denoising diffusion for anomaly detection
    Li, Xuan
    Xiao, Chunjing
    Feng, Ziliang
    Pang, Shikang
    Tai, Wenxin
    Zhou, Fan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237