Multi-view contrastive clustering via integrating graph aggregation and confidence enhancement

被引:9
|
作者
Bian, Jintang [1 ,2 ]
Xie, Xiaohua [1 ,2 ]
Lai, Jian-Huang [1 ,2 ]
Nie, Feiping [3 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] GuangDong Prov Key Lab Informat Secur Technol, Guangzhou, Peoples R China
[3] Northwestern Polytech Univ, Sch Comp Sci, Sch Artificial Intelligence Opt & Elect iOPEN, Xian, Peoples R China
[4] Northwestern Polytech Univ, Key Lab Intelligent Interact & Applicat, Minist Ind & Informat Technol, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep multi-view clustering; Graph convolutional network; Self-supervision learning; Contrastive learning; REPRESENTATION; RECOGNITION;
D O I
10.1016/j.inffus.2024.102393
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi -view clustering endeavors to effectively uncover consistent clustering patterns across multiple data sources or feature spaces. This field grapples with two key challenges: (1) the effective integration and utilization of consistency and complementarity information from diverse view spaces, and (2) the capturing of structural correlations between data samples in the multi -view context. To address these challenges, this paper proposes the Multi -view contrAstive clustering with Graph Aggregation and confidence enhancement (MAGA) algorithm. Specifically, we employ a deep autoencoder network to learn embedded features for each independent view. To harness consistency and complementarity information, we introduce the Simple Cross -view Spectral Graph Aggregation module. This module utilizes graph convolutional layers to generate view -specific graph embeddings and subsequently aggregates these embeddings from different views into a unified feature space using a cross -view self -attention mechanism. To capture both inter -view and intraview structural correlations among different samples, we propose a dual representation contrastive learning mechanism, which operates concurrently at both the instance and feature levels. Additionally, we introduce the maximizing cluster assignment confidence mechanism to obtain more compact clustering assignments. As a result, MAGA outperforms 20 competitive methods across nine benchmark datasets, showcasing its superior performance. Code: https://github.com/BJT-bjt/MAGA.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Multi-view Contrastive Graph Clustering
    Pan, Erlin
    Kang, Zhao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [2] Graph Contrastive Partial Multi-View Clustering
    Wang, Yiming
    Chang, Dongxia
    Fu, Zhiqiang
    Wen, Jie
    Zhao, Yao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 (6551-6562) : 6551 - 6562
  • [3] Contrastive Consensus Graph Learning for Multi-View Clustering
    Wang, Shiping
    Lin, Xincan
    Fang, Zihan
    Du, Shide
    Xiao, Guobao
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (11) : 2027 - 2030
  • [4] Contrastive and attentive graph learning for multi-view clustering
    Wang, Ru
    Li, Lin
    Tao, Xiaohui
    Wang, Peipei
    Liu, Peiyu
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [5] Contrastive Consensus Graph Learning for Multi-View Clustering
    Shiping Wang
    Xincan Lin
    Zihan Fang
    Shide Du
    Guobao Xiao
    IEEE/CAAJournalofAutomaticaSinica, 2022, 9 (11) : 2027 - 2030
  • [6] Graph Structure Aware Contrastive Multi-View Clustering
    Chen, Rui
    Tang, Yongqiang
    Cai, Xiangrui
    Yuan, Xiaojie
    Feng, Wenlong
    Zhang, Wensheng
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (03) : 260 - 274
  • [7] Contrastive and attentive graph learning for multi-view clustering
    Wang, Ru
    Li, Lin
    Tao, Xiaohui
    Wang, Peipei
    Liu, Peiyu
    Information Processing and Management, 2022, 59 (04):
  • [8] MULTI-VIEW SUBSPACE CLUSTERING WITH CONSENSUS GRAPH CONTRASTIVE LEARNING
    Zhang, Jie
    Sun, Yuan
    Guo, Yu
    Wang, Zheng
    Nie, Feiping
    Wang, Fei
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6340 - 6344
  • [9] Multi-view Spectral Clustering via Integrating Label and Data Graph Learning
    El Hajjar, Sally
    Dornaika, Fadi
    Abdallah, Fahed
    Omrani, Hichem
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 109 - 120
  • [10] Incomplete Contrastive Multi-View Clustering with High-Confidence Guiding
    Chao, Guoqing
    Jiang, Yi
    Chu, Dianhui
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 10, 2024, : 11221 - 11229