Subtemperate regelation exhibits power-law premelting

被引:1
作者
Meyer, Colin. R. [1 ]
Bellamy, Julia [1 ,2 ]
Rempel, Alan. W. [3 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[2] Cornell Univ, Meinig Sch Biomed Engn, Ithaca, NY 14853 USA
[3] Univ Oregon, Dept Earth Sci, Eugene, OR 97405 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2024年 / 480卷 / 2290期
关键词
regelation; premelting; solidification; SUBGLACIAL DRAINAGE; WIRE REGELATION; FROST HEAVE; ICE; GLACIER; MOTION; DYNAMICS; WATER;
D O I
10.1098/rspa.2024.0032
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wire regelation is a common tabletop demonstration of the pressure-dependence of the ice melting temperature where a loaded wire moves from top to bottom through a block of ice, yet leaves the block intact. With the background temperature fixed at the bulk melting point similar to 0 degrees C, the elevated ice and liquid pressures beneath the wire cause melting because of the negative Clapeyron slope, while refreezing takes place above the wire where the pressures are reduced. Regelation is a model for temperate glacier ice moving through small bedrock obstacles. Laboratory experiments demonstrate that regelation continues to occur, albeit at much slower velocities, when the fixed background ice temperature is cold enough that the wire load is insufficient to produce bulk melting, suggesting that premelting plays a central role. Here, we compile available data for wire regelation at all temperatures. We then develop a model for the subtemperate data points, where the film thickness depends on the temperature below the melting point. We find agreement between the power-law model and the laboratory data for slow regelation velocities, allowing us to characterize the dominant premelting mechanisms for different wire compositions. These results advance our understanding of the role of premelting in subtemperate glacier sliding.
引用
收藏
页数:19
相关论文
共 46 条
[1]   Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet [J].
Andrews, Lauren C. ;
Catania, Ginny A. ;
Hoffman, Matthew J. ;
Gulley, Jason D. ;
Luethi, Martin P. ;
Ryser, Claudia ;
Hawley, Robert L. ;
Neumann, Thomas A. .
NATURE, 2014, 514 (7520) :80-+
[2]  
Cuffey KM, 2000, GEOLOGY, V28, P351, DOI 10.1130/0091-7613(2000)028<0351:EACGB>2.3.CO
[3]  
2
[4]   Interfacial water in polar glaciers and glacier sliding at -17 °C [J].
Cuffey, KM ;
Conway, H ;
Hallet, B ;
Gades, AM ;
Raymond, CF .
GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (06) :751-754
[5]   The physics of premelted ice and its geophysical consequences [J].
Dash, J. G. ;
Rempel, A. W. ;
Wettlaufer, J. S. .
REVIEWS OF MODERN PHYSICS, 2006, 78 (03) :695-741
[6]   SURFACE MELTING [J].
DASH, JG .
CONTEMPORARY PHYSICS, 1989, 30 (02) :89-100
[7]   THE PREMELTING OF ICE AND ITS ENVIRONMENTAL CONSEQUENCES [J].
DASH, JG ;
FU, HY ;
WETTLAUFER, JS .
REPORTS ON PROGRESS IN PHYSICS, 1995, 58 (01) :115-167
[8]   Relaxation time of confined aqueous films under shear [J].
Dhinojwala, A ;
Granick, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (01) :241-242
[9]   PRESSURE MELTING AND REGULATION OF ICE BY ROUND WIRES [J].
DRAKE, LD ;
SHREVE, RL .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1973, 332 (1588) :51-+
[10]   DIRECT OBSERVATION OF BASAL SLIDING AND DEFORMATION OF BASAL DRIFT AT SUB-FREEZING TEMPERATURES [J].
ECHELMEYER, K ;
WANG, ZX .
JOURNAL OF GLACIOLOGY, 1987, 33 (113) :83-98