A Study on Zografos-Balakrishnan Log-Normal Distribution: Properties and Application to Cancer Dataset

被引:0
|
作者
Shibu, D. S. [1 ]
Nitin, S. L. [1 ]
Irshad, M. R. [2 ]
机构
[1] Univ Coll, Dept Stat, Thiruvananthapuram 695034, India
[2] CUSAT, Dept Stat, Cochin 682022, India
关键词
Zografos-Balakrishnan-G family; reliability measures; maximum likelihood estimation; Bayesian; estimation; bootstrap confidence interval; likelihood ratio test; HAZARD; FAMILY;
D O I
10.57805/revstat.v22i1.436
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we studied a generalization of the log-normal distribution called Zografos-Balakrishnan log-normal distribution, and investigate its various important properties and functions including moments, quantile function, various reliability measures, Re<acute accent>nyi entropy, and some inequality measures. The estimation of unknown parameters is discussed by the methods of maximum likelihood, and the Bayesian technique and their simulation studies are also carried out. The applicability of the distribution is illustrated utilizing a real dataset. A likelihood ratio test is utilized for testing the efficiency of the third parameter. The effectiveness of this model for the dataset is also established using the parametric bootstrap approach.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 32 条
  • [1] The Zografos-Balakrishnan Log-Logistic Distribution: Properties and Applications
    Ramos, Manoel Wallace A.
    Cordeiro, Gauss M.
    Marinho, Pedro Rafael D.
    Dias, Cicero Rafael B.
    Hamedani, G. G.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2013, 12 (03): : 225 - 244
  • [2] The Zografos-Balakrishnan Log-Logistic Distribution: Properties and Applications
    Manoel Wallace A. Ramos
    Gauss M. Cordeiro
    Pedro Rafael D. Marinho
    Cícero Rafael B. Dias
    G. G. Hamedani
    Journal of Statistical Theory and Applications, 2013, 12 (3): : 225 - 244
  • [3] THE ZOGRAFOS-BALAKRISHNAN LINDLEY DISTRIBUTION: PROPERTIES AND APPLICATIONS
    Irshad, Muhammed Rasheed
    D'cruz, Veena
    Maya, Radhakumari
    STATISTICA, 2021, 81 (01) : 45 - 64
  • [4] The Zografos-Balakrishnan odd log-logistic family of distributions: Properties and Applications
    Cordeiro, Gauss M.
    Alizadeh, Morad
    Ortega, Edwin M. M.
    Valdivieso Serrano, Luis H.
    Hacettepe Journal of Mathematics and Statistics, 2016, 45 (06): : 1767 - 1803
  • [5] COMMENTS ON IRSHAD ET AL. (2021) "THE ZOGRAFOS-BALAKRISHNAN LINDLEY DISTRIBUTION: PROPERTIES AND APPLICATIONS"
    Ghorbani, Hamid
    Irshad, Muhammed Rasheed
    STATISTICA, 2022, 82 (01) : 71 - 76
  • [6] The beta log-normal distribution
    Castellares, F.
    Montenegro, L. C.
    Cordeiro, G. M.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (02) : 203 - 228
  • [7] On the Topp-Leone log-normal distribution: Properties, modeling, and applications in astronomical and cancer data
    Chesneau, Christophe
    Irshad, Muhammed Rasheed
    Shibu, Damodaran Santhamani
    Nitin, Soman Latha
    Maya, Radhakumari
    CHILEAN JOURNAL OF STATISTICS, 2022, 13 (01): : 67 - 90
  • [8] ON THE SHIFTED HYBRID LOG-NORMAL DISTRIBUTION
    Shibu, Damodaran Santhamani
    Nitin, Soman Latha
    Irshad, Muhammed Rasheed
    STATISTICA, 2022, 82 (04) : 417 - 431
  • [9] Log-epsilon-skew normal: A generalization of the log-normal distribution
    Hutson, Alan D.
    Mashtare, Terry L., Jr.
    Mudholkar, Govind S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (17) : 4197 - 4215
  • [10] On the distribution of developmental errors: comparing the normal, gamma, and log-normal distribution
    Van Dongen, Stefan
    Moller, Anders P.
    BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, 2007, 92 (02) : 197 - 210