Optimal designs for comparing several regression curves

被引:0
|
作者
Liu, Chang-Yu [1 ]
Liu, Xin [2 ]
Yue, Rong-Xian [1 ,3 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
[3] Fuyao Univ Sci & Technol, Fac Fdn Curriculum, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal designs; Multiple comparison; Equivalence theorems; Reparameterization; SIMULTANEOUS CONFIDENCE BANDS; CONTRASTS; MODELS;
D O I
10.1007/s42952-024-00272-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is concerned with the optimal design problem of efficient statistical inference for comparing several regression curves estimated from samples of independent measurements. The objective is to find the mu pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <^>c_{p}$$\end{document}-optimal designs that minimize an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}-norm of the asymptotic variance of the prediction for the contrasts of k regression curves. General equivalence theorems are established to verify the mu pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu <^>c_p$$\end{document}-optimality in the set of all approximate designs. Invariant property with respect to model reparameterization are also obtained. The results obtained for the linear models are extended to the situation of generalized linear models. Three examples are presented to illustrate the applications of the obtained results.
引用
收藏
页码:906 / 924
页数:19
相关论文
共 50 条
  • [21] D-s-OPTIMAL DESIGNS IN POLYNOMIAL REGRESSION MODELS
    Mandal, S.
    Yang, Y.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2015, 45 (03) : 167 - 179
  • [22] OPTIMAL DESIGNS FOR SERIES ESTIMATION IN NONPARAMETRIC REGRESSION WITH CORRELATED DATA
    Schorning, Kirsten
    Konstantinou, Maria
    Dette, Holger
    STATISTICA SINICA, 2021, 31 (03) : 1643 - 1667
  • [23] Optimal designs for estimating individual coefficients in polynomial regression with no intercept
    Dette, Holger
    Melas, Viatcheslav B.
    Shpilev, Petr
    STATISTICS & PROBABILITY LETTERS, 2020, 158
  • [24] D-optimal designs for polynomial regression with exponential weight function
    Fu-Chuen Chang
    Hsiu-Ching Chang
    Sheng-Shian Wang
    Metrika, 2009, 70 : 339 - 354
  • [26] Optimal designs for minimax-criteria in random coefficient regression models
    Maryna Prus
    Statistical Papers, 2019, 60 : 465 - 478
  • [27] A Nested Differential Evolution Algorithm for Optimal Designs of Quantile Regression Models
    Xia, Zhenyang
    Xing, Chen
    Zhang, Yue
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 25 - 36
  • [28] Optimal designs for linear regression models with skew-normal errors
    Zhou, Xiao-Dong
    Wang, Yun-Juan
    Yue, Rong-Xian
    STATISTICS, 2024,
  • [29] Constructing c-Optimal Designs for Polynomial Regression without an Intercept
    V. B. Melas
    P. V. Shpilev
    Vestnik St. Petersburg University, Mathematics, 2020, 53 : 223 - 231
  • [30] CVX-based algorithms for constructing various optimal regression designs
    Wong, Weng Kee
    Zhou, Julie
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2019, 47 (03): : 374 - 391