Optimized encoder-decoder cascaded deep convolutional network for leaf disease image segmentation

被引:0
|
作者
Femi, David [1 ]
Mukunthan, Manapakkam Anandan [1 ]
机构
[1] Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci & T, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
Leaf disease classification; deep learning; DEDCNet; hyperparameters; dingo optimizer; exploration; exploitation;
D O I
10.1080/0954898X.2024.2326493
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, Deep Learning (DL) techniques are being used to automate the identification and diagnosis of plant diseases, thereby enhancing global food security and enabling non-experts to detect these diseases. Among many DL techniques, a Deep Encoder-Decoder Cascaded Network (DEDCNet) model can precisely segment diseased areas from the leaf images to differentiate and classify multiple diseases. On the other hand, the model training depends on the appropriate selection of hyperparameters. Also, this network structure has weak robustness with different parameters. Hence, in this manuscript, an Optimized DEDCNet (ODEDCNet) model is proposed for improved leaf disease image segmentation. To choose the best DEDCNet hyperparameters, a brand-new Dingo Optimization Algorithm (DOA) is included in this model. The DOA depends on the foraging nature of dingoes, which comprises exploration and exploitation phases. In exploration, it attains many predictable decisions in the search area, whereas exploitation enables exploring the best decisions in a provided area. The segmentation accuracy is used as the fitness value of each dingo for hyperparameter selection. By configuring the chosen hyperparameters, the DEDCNet is trained to segment the leaf disease regions. The segmented images are further given to the pre-trained Convolutional Neural Networks (CNNs) followed by the Support Vector Machine (SVM) for classifying leaf diseases. ODEDCNet performs exceptionally well on the PlantVillage and Betel Leaf Image datasets, attaining an astounding 97.33% accuracy on the former and 97.42% accuracy on the latter. Both datasets achieve noteworthy recall, F-score, Dice coefficient, and precision values: the Betel Leaf Image dataset shows values of 97.4%, 97.29%, 97.35%, and 0.9897; the PlantVillage dataset shows values of 97.5%, 97.42%, 97.46%, and 0.9901, all completed in remarkably short processing times of 0.07 and 0.06 seconds, respectively. The achieved outcomes are evaluated with the contemporary optimization algorithms using the considered datasets to comprehend the efficiency of DOA.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Deep Convolutional Encoder-Decoder Network with Model Uncertainty for Semantic Segmentation
    Isobe, Shuya
    Arai, Shuichi
    2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2017, : 365 - 370
  • [2] Optimized deep encoder-decoder methods for crack segmentation
    Konig, Jacob
    Jenkins, Mark David
    Mannion, Mike
    Barrie, Peter
    Morison, Gordon
    DIGITAL SIGNAL PROCESSING, 2021, 108
  • [3] Deep Convolutional Encoder-Decoder Architecture for Neuronal Structure Segmentation
    Cui, Qingqing
    Pu, Peng
    Chen, Lu
    Zhao, Wenzheng
    Liu, Yu
    2018 INTERNATIONAL CONFERENCE ON CONTROL, ARTIFICIAL INTELLIGENCE, ROBOTICS & OPTIMIZATION (ICCAIRO), 2018, : 242 - 247
  • [4] Optimizing Fully Convolutional Encoder-Decoder Network for Segmentation of Diabetic Eye Disease
    Khan, Abdul Qadir
    Sun, Guangmin
    Li, Yu
    Bilal, Anas
    Manan, Malik Abdul
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2481 - 2504
  • [5] Semantic Segmentation of Remote Sensing Image Based on Encoder-Decoder Convolutional Neural Network
    Zhang Zhehan
    Fang Wei
    Du Lili
    Qiao Yanli
    Zhang Dongying
    Ding Guoshen
    ACTA OPTICA SINICA, 2020, 40 (03)
  • [6] Semantic Segmentation of Anaemic RBCs Using Multilevel Deep Convolutional Encoder-Decoder Network
    Shahzad, Muhammad
    Umar, Arif Iqbal
    Shirazi, Syed Hamad
    Shaikh, Israr Ahmed
    IEEE ACCESS, 2021, 9 : 161326 - 161341
  • [7] Plant leaf infected spot segmentation using robust encoder-decoder cascaded deep learning model
    Femi, Dev
    Mukunthan, Manoj Ananad
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2023,
  • [8] A Deep Convolutional Encoder-Decoder Architecture for Retinal Blood Vessels Segmentation
    Adeyinka, Adegun Adekanmi
    Adebiyi, Marion Olubunmi
    Akande, Noah Oluwatobi
    Ogundokun, Roseline Oluwaseun
    Kayode, Anthonia Aderonke
    Oladele, Tinuke Omolewa
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2019, PT V: 19TH INTERNATIONAL CONFERENCE, SAINT PETERSBURG, RUSSIA, JULY 14, 2019, PROCEEDINGS, PART V, 2019, 11623 : 180 - 189
  • [9] Seismic Stratum Segmentation Using an Encoder-Decoder Convolutional Neural Network
    Wang, Detao
    Chen, Guoxiong
    MATHEMATICAL GEOSCIENCES, 2021, 53 (06) : 1355 - 1374
  • [10] An encoder-decoder deep neural network for binary segmentation of seismic facies
    Lima, Gefersom
    Zeiser, Felipe Andre
    Da Silveira, Ariane
    Rigo, Sandro
    Ramos, Gabriel de Oliveira
    COMPUTERS & GEOSCIENCES, 2024, 183