Exact surface energy of the Hubbard model with nonparallel boundary magnetic fields

被引:0
作者
Sun, Pei [1 ,2 ]
Qiao, Yi [2 ,3 ]
Yang, Tao
Cao, Junpeng [2 ,5 ,6 ,7 ]
Yang, Wen-Li [1 ,2 ,3 ,4 ]
机构
[1] Northwest Univ, Sch Phys, Xian 710127, Peoples R China
[2] Peng Huanwu Ctr Fundamental Theory, Xian 710127, Peoples R China
[3] Northwest Univ, Inst Modern Phys, Xian 710127, Peoples R China
[4] Shaanxi Key Lab Theoret Phys Frontiers, Xian 710127, Peoples R China
[5] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[6] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[7] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 国家重点研发计划;
关键词
BETHE-ANSATZ; EXACT INTEGRABILITY; CHAIN; EXCITATIONS; SPECTRUM; MATRICES; STATES;
D O I
10.1103/PhysRevB.110.035153
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we explore the precise physical quantities in the thermodynamic limit of the one-dimensional Hubbard model with nonparallel boundary magnetic fields based on the off-diagonal Bethe ansatz solution. A particular emphasis is placed on the half-filling condition to investigate the distinct patterns of Bethe roots in the reduced Bethe ansatz equations for different boundary parameters. The ground state of the system can be divided into five regions according to the distribution of Bethe roots. By analyzing these patterns, we calculate the densities of states, ground-state energy density, and surface energy. The results reveal the existence of stable- boundary bound states, which are dependent on specific constraints regarding the boundary magnetic fields.
引用
收藏
页数:10
相关论文
共 42 条
  • [1] The ALPS project release 1.3:: Open-source software for strongly correlated systems
    Albuquerque, A. F.
    Alet, F.
    Corboz, P.
    Dayal, P.
    Feiguin, A.
    Fuchs, S.
    Gamper, L.
    Gull, E.
    Guertler, S.
    Honecker, A.
    Igarashi, R.
    Koerner, M.
    Kozhevnikov, A.
    Laeuchli, A.
    Manmana, S. R.
    Matsumoto, M.
    McCulloch, I. P.
    Michel, F.
    Noack, R. M.
    Pawlowski, G.
    Pollet, L.
    Pruschke, T.
    Schollwoeck, U.
    Todo, S.
    Trebst, S.
    Troyer, M.
    Werner, P.
    Wessel, S.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 1187 - 1193
  • [2] Elementary excitations in the Hubbard model with boundaries
    Asakawa, H
    Suzuki, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (11): : 3741 - 3756
  • [3] Finite-size corrections in the XXZ model and the Hubbard model with boundary fields
    Asakawa, H
    Suzuki, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (02): : 225 - 245
  • [4] SURFACE-ENERGY OF INTEGRABLE QUANTUM SPIN CHAINS
    BATCHELOR, MT
    HAMER, CJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (05): : 761 - 771
  • [5] Spectrum of boundary states in the open Hubbard chain
    Bedurftig, G
    Frahm, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (12): : 4139 - 4149
  • [6] Off-Diagonal Bethe Ansatz and Exact Solution of a Topological Spin Ring
    Cao, Junpeng
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (13)
  • [7] Stripe and superconducting order competing in the Hubbard model on a square lattice studied by a combined variational Monte Carlo and tensor network method
    Darmawan, Andrew S.
    Nomura, Yusuke
    Yamaji, Youhei
    Imada, Masatoshi
    [J]. PHYSICAL REVIEW B, 2018, 98 (20)
  • [8] COMPLETE SOLUTION OF THE ONE-DIMENSIONAL HUBBARD-MODEL
    ESSLER, FHL
    KOREPIN, VE
    SCHOUTENS, K
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (27) : 3848 - 3851
  • [9] ESSLER FHL, 1992, NUCL PHYS B, V384, P431
  • [10] Fishman M., 2022, SciPost Phys. Codebases, V4, DOI 10.21468/SciPostPhysCodeb.4-r0.3