NH3 line broadening coefficients and intensities measurement and impurities determination in emerging applications: CCUS, Biomethane and H2

被引:1
作者
Zhu, Denghao [1 ]
Seifert, Leopold [1 ]
Agarwal, Sumit [1 ]
Shu, Bo [1 ]
Fernandes, Ravi [1 ,2 ]
Qu, Zhechao [1 ]
机构
[1] Phys Tech Bundesanstalt, Dept Phys Chem, Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Internal Combust Engines, Braunschweig, Germany
关键词
Ammonia; TDLAS; Optical gas standard; Broadening coefficient; Line intensity; Gas impurity; LASER; SPECTROSCOPY; AMMONIA; SENSOR; N2O; SPECTROMETER; CO2;
D O I
10.1016/j.saa.2024.124642
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
A mid -infrared quantum cascade laser (Mid-IR QCL) coupled with a Single Pass Cell and a Multi Pass Cell, was utilized to measure ammonia (NH 3 ) absorption spectroscopic parameters and determine NH 3 impurities toward three emerging applications. We for the first time measured the pressure broadening coefficients perturbed by Air, O 2 , N 2 , He, CO 2 , CH 4 , and H 2 and the line intensities of six NH 3 transition lines near 1084.6 cm - 1 . The measured NH 3 -He, NH 3 -Air, and NH 3 -CO 2 broadening coefficients align with HITRAN database, while NH 3 -H 2 coefficients exhibit a maximum discrepancy of 46 %. Deviations between the measured line intensities and HITRAN database are minimal. Nevertheless, the uncertainties of line intensities have been significantly reduced from 20 % in HITRAN to below 3 %. The newly measured line parameters are utilized to address NH 3 impurity requirements outlined in CCUS (ISO 27913:2016), Biomethane (EN 16723:2016), and H 2 (ISO 14687:2019) standards. Based on the concept of optical gas standard (OGS), the NH 3 impurity detection requirements in all three standards have been fulfilled with an uncertainty of 1.35 %. The precision of the NH 3 -OGS is 800 part per trillion (ppt) with an integration time of 100 s. The repeatability of the NH 3 -OGS is 130 ppt for a continuous measurement time of 48 min. Notably, the NH 3 -OGS effectively addresses the highly nonlinear adsorption-desorption dynamics, underscoring the potential of OGS as a calibration -free and SI-traceable metrological gas analysis instrument.
引用
收藏
页数:11
相关论文
共 49 条
[11]   Measurement of temperature-dependent line parameters of ammonia transitions near 1103 cm-1 [J].
Duan, Kun ;
Ji, Yongbin ;
Lu, Zhimin ;
Ren, Wei .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 288
[12]   A review on production, storage of hydrogen and its utilization as an energy resource [J].
Dutta, Suman .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2014, 20 (04) :1148-1156
[13]  
EN, 2017, EN 16723
[14]   Absolute intensity of the NH3 ν2 band [J].
Fabian, M ;
Yamada, KMT .
JOURNAL OF MOLECULAR SPECTROSCOPY, 1999, 198 (01) :102-109
[15]   Laser sensors for energy systems and process industries: Perspectives and directions [J].
Farooq, Aamir ;
Alquaity, Awad B. S. ;
Raza, Mohsin ;
Nasir, Ehson F. ;
Yao, Shunchun ;
Ren, Wei .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2022, 91
[16]   Recent progress on laser absorption spectroscopy for determination of gaseous chemical species [J].
Fu, Bo ;
Zhang, Chenghong ;
Lyu, Wenhao ;
Sun, Jingxuan ;
Shang, Ce ;
Cheng, Yuan ;
Xu, Lijun .
APPLIED SPECTROSCOPY REVIEWS, 2022, 57 (02) :112-152
[17]   Infrared laser-absorption sensing for combustion gases [J].
Goldenstein, Christopher S. ;
Spearrin, R. Mitchell ;
Jeffries, Jay B. ;
Hanson, Ronald K. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2017, 60 :132-176
[18]   The HITRAN2020 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hargreaves, R. J. ;
Hashemi, R. ;
Karlovets, E., V ;
Skinner, F. M. ;
Conway, E. K. ;
Hill, C. ;
Kochanov, R., V ;
Tan, Y. ;
Wcislo, P. ;
Finenko, A. A. ;
Nelson, K. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V ;
Campargue, A. ;
Chance, K., V ;
Coustenis, A. ;
Drouin, B. J. ;
Flaud, J-M ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Mlawer, E. J. ;
Nikitin, A., V ;
Perevalov, V., I ;
Rotger, M. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Adkins, E. M. ;
Baker, A. ;
Barbe, A. ;
Cane, E. ;
Csaszar, A. G. ;
Dudaryonok, A. ;
Egorov, O. ;
Fleisher, A. J. ;
Fleurbaey, H. ;
Foltynowicz, A. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J-M ;
Horneman, V-M ;
Huang, X. ;
Karman, T. ;
Karns, J. ;
Kassi, S. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 277
[19]   A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy [J].
Guo, Xinqian ;
Zheng, Fei ;
Li, Chuanliang ;
Yang, Xiaofei ;
Li, Ning ;
Liu, Shuping ;
Wei, Jilin ;
Qiu, Xuanbing ;
He, Qiusheng .
OPTICS AND LASERS IN ENGINEERING, 2019, 115 :243-248
[20]  
Hanson R., 2016, Spectroscopy and Optical Diagnostics for Gases, DOI DOI 10.1007/978-3-319-23252-2