Engineering silica membranes for separation performance, hydrothermal stability, and production scalability

被引:23
作者
Bui, Vinh [1 ]
Tandel, Ameya Manoj [1 ]
Satti, Varun Reddy [1 ]
Haddad, Elizabeth [1 ]
Lin, Haiqing [1 ]
机构
[1] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
来源
ADVANCED MEMBRANES | 2023年 / 3卷
基金
美国国家科学基金会;
关键词
Silica membranes; Carbon capture; Organosilica membranes; Hydrothermal stability; H; 2; /CO; separation; Scalability; CHEMICAL-VAPOR-DEPOSITION; GAS PERMEATION PROPERTIES; BRIDGED ORGANOSILICA MEMBRANES; REVERSE-OSMOSIS PERFORMANCE; ETHYL LACTATE SYNTHESIS; SOL-GEL; MICROPOROUS SILICA; DOPED SILICA; PORE-SIZE; HYDROGEN SEPARATION;
D O I
10.1016/j.advmem.2023.100064
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Silica membranes have been successfully practiced for solvent dehydration and emerged as an exciting platform for gas separations (such as H2/CO2) due to their unique porous structures for molecular sieving, tunable chemistries, and excellent thermal and chemical stability. This review aims to provide a comprehensive update on the advancement of silica membranes for gas and liquid separations in the last decade. First, we summarize various techniques to fabricate membranes (particularly those at low temperatures) and describe the effect of processing parameters on the membrane structures. Second, penetrant transport mechanisms and molecular dynamic simulations are presented to elucidate the structure-properties relationship. Third, we highlight state-ofthe-art silica membranes with promising separation properties for gases, vapors, and liquids and various engineering strategies to improve hydrothermal stability, production scalability, and separation performance. Finally, we provide perspectives on the future development of these membranes for practical applications.
引用
收藏
页数:28
相关论文
共 215 条
[21]   Hybrid silica membranes with enhanced hydrogen and CO2 separation properties [J].
Castricum, Hessel L. ;
Qureshi, Hammad F. ;
Nijmeijer, Arian ;
Winnubst, Louis .
JOURNAL OF MEMBRANE SCIENCE, 2015, 488 :121-128
[22]   Tuning the nanopore structure and separation behavior of hybrid organosilica membranes [J].
Castricum, Hessel L. ;
Paradis, Goulven G. ;
Mittelmeijer-Hazeleger, Marjo C. ;
Bras, Wim ;
Eeckhaut, Guy ;
Vente, Jaap F. ;
Rothenberg, Gadi ;
ten Elshof, Johan E. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2014, 185 :224-234
[23]   Tailoring the Separation Behavior of Hybrid Organosilica Membranes by Adjusting the Structure of the Organic Bridging Group [J].
Castricum, Hessel L. ;
Paradis, Goulven G. ;
Mittelmeijer-Hazeleger, Marjo C. ;
Kreiter, Robert ;
Vente, Jaap F. ;
ten Elshof, Johan E. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2319-2329
[24]   Fabrication of highly selective organosilica membrane for gas separation by mixing bis(triethoxysilyl)ethane with methyltriethoxysilane [J].
Chai, Shaohua ;
Du, Hongbin ;
Zhao, Yayun ;
Lin, Yichao ;
Kong, Chunlong ;
Chen, Liang .
SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 222 :162-167
[25]   Molecular simulation of micro-structures and gas diffusion behavior of organic-inorganic hybrid amorphous silica membranes [J].
Chang, Kai-Shiun ;
Yoshioka, Tomohisa ;
Kanezashi, Masakoto ;
Tsuru, Toshinori ;
Tung, Kuo-Lun .
JOURNAL OF MEMBRANE SCIENCE, 2011, 381 (1-2) :90-101
[26]   A molecular dynamics simulation of a homogeneous organic-inorganic hybrid silica membrane [J].
Chang, Kai-Shiun ;
Yoshioka, Tomohisa ;
Kanezashi, Masakoto ;
Tsuru, Toshinori ;
Tung, Kuo-Lun .
CHEMICAL COMMUNICATIONS, 2010, 46 (48) :9140-9142
[27]   Membrane materials targeting carbon capture and utilization [J].
Chen, Guining ;
Wang, Tianlei ;
Zhang, Guangru ;
Liu, Gongping ;
Jin, Wanqin .
ADVANCED MEMBRANES, 2022, 2
[28]   Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation [J].
Chisca, Stefan ;
Musteata, Valentina-Elena ;
Zhang, Wen ;
Vasylevskyi, Serhii ;
Falca, Gheorghe ;
Abou-Hamad, Edy ;
Emwas, Abdul-Hamid ;
Altunkaya, Mustafa ;
Nunes, Suzana P. .
SCIENCE, 2022, 376 (6597) :1105-+
[29]   Obtention of ZrO2-SiO2 hydrogen permselective membrane by chemical vapor deposition method [J].
Choi, Ho-Sang ;
Ryu, Cheol-Hwi ;
Hwang, Gab-Jin .
CHEMICAL ENGINEERING JOURNAL, 2013, 232 :302-309
[30]  
Constantino D.S. M., 2017, Advances in Chemical Engineering, V51, P261