Prediction of Drilling Efficiency for Rotary Drilling Rig Based on an Improved Back Propagation Neural Network Algorithm

被引:2
|
作者
Jia, Cunde [1 ,2 ,3 ,4 ]
Zhang, Junyong [1 ,2 ,3 ]
Kong, Xiangdong [1 ,2 ,3 ]
Xu, Hongyu [4 ]
Jiang, Wenguang [1 ,2 ,3 ]
Li, Shengbin [1 ,2 ,3 ]
Jiang, Yunhong [5 ]
Ai, Chao [1 ,2 ,3 ]
机构
[1] Yanshan Univ, State Key Lab Crane Technol, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Sch Mech Engn, Qinhuangdao 066004, Peoples R China
[3] Hebei Prov Key Lab Heavy Machinery Fluid Power Tra, Qinhuangdao 066004, Peoples R China
[4] Beijing Sany Intelligent Mfg Technol Co Ltd, Beijing 100005, Peoples R China
[5] Northumbria Univ, Dept Appl Sci, Newcastle NE1 8ST, England
基金
中国国家自然科学基金;
关键词
BP neural network; drilling efficiency; drilling system; genetic algorithm; particle swarm optimization; prediction model; OPTIMIZATION; DESIGN;
D O I
10.3390/machines12070438
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurately predicting the drilling efficiency of rotary drilling is the key to achieving intelligent construction. The current types of principle analysis (based on traditional interactive experimental methods) and efficiency prediction (based on simulation models) cannot meet the requirements needed for the efficient, real-time, and accurate drilling efficiency predictions of rotary drilling rigs. Therefore, we adopted a method based on machine learning to predict drilling efficiency. The extremely complex rock fragmentation process in drilling conditions also brings challenges to predicting drilling efficiency. Therefore, this article went through a combination of mechanism and data analysis to conduct correlation analysis and to clarify the drilling characteristic parameters that are highly correlated with drilling efficiency, and it then used them as inputs for machine learning models. We propose a rotary drilling rig drilling efficiency prediction model based on the GA-BP neural network to construct an accurate and efficient drilling efficiency prediction model. Compared with traditional BP neural networks, it utilizes the global optimization ability of a genetic algorithm to obtain the initial weights and thresholds of a BP neural network in order to avoid the defect of ordinary BP neural networks, i.e., that they easily fall into local optimal solutions during the training process. The average prediction accuracy of the GA-BP neural network is 93.6%, which is 3.1% higher than the traditional BP neural network.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Prediction of rural residents' tourism demand based on back propagation neural network
    Sun J.
    Chang T.
    Sun, Jing (jingsunj@yeah.net), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (09): : 320 - 331
  • [22] Security Situation Prediction based on Hybrid Rice Optimization Algorithm and Back Propagation Neural Network
    Zhang, Xu
    Ye, Zhiwei
    Yan, Lingyu
    Wang, Chunzhi
    Wang, Ruoxi
    PROCEEDINGS OF THE 2018 IEEE 4TH INTERNATIONAL SYMPOSIUM ON WIRELESS SYSTEMS WITHIN THE INTERNATIONAL CONFERENCES ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS (IDAACS-SWS), 2018, : 73 - 77
  • [23] A Fault Prediction Algorithm Based on Rough Sets and Back Propagation Neural Network for Vehicular Networks
    Geng, Rong
    Wang, Xiaojie
    Ye, Ning
    Liu, Jun
    IEEE ACCESS, 2018, 6 : 74984 - 74992
  • [24] Safety Design of Rotary Drilling Rig Mast Based on Multi-Condition Analysis
    Yang, Heng
    Ren, Yuhang
    Yang, Haorong
    Xu, Gening
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [25] Compensation of Rotary Encoders Using Fourier Expansion-Back Propagation Neural Network Optimized by Genetic Algorithm
    Jia, Hua-Kun
    Yu, Lian-Dong
    Jiang, Yi-Zhou
    Zhao, Hui-Ning
    Cao, Jia-Ming
    SENSORS, 2020, 20 (09)
  • [26] Tunnel Geology Prediction Using a Neural Network Based on Instrumented Drilling Test
    Fang, Yuwei
    Wu, Zhenjun
    Sheng, Qian
    Tang, Hua
    Liang, Dongcai
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 17
  • [27] Optimizing Back-Propagation Neural Network to Retrieve Sea Surface Temperature Based on Improved Sparrow Search Algorithm
    Ji, Changming
    Ding, Haiyong
    REMOTE SENSING, 2023, 15 (24)
  • [28] Prediction of China's Carbon Price Based on the Genetic Algorithm-Particle Swarm Optimization-Back Propagation Neural Network Model
    Wang, Jining
    Zhao, Xuewei
    Wang, Lei
    SUSTAINABILITY, 2025, 17 (01)
  • [29] Wind Speed Prediction Using a Cooperative Coevolution Genetic Algorithm Based on Back Propagation Neural Network
    Li, Jie
    Wang, Rui
    Zhang, Tao
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4578 - 4583
  • [30] A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network
    Sun, Wei
    Huang, Chenchen
    JOURNAL OF CLEANER PRODUCTION, 2020, 243