A compressed 2D-DOA and polarization estimation algorithm for mmWave polarized massive MIMO systems

被引:1
作者
Li, Liangliang [1 ,2 ]
Wang, Xianpeng [1 ,2 ]
Lan, Xiang [1 ,2 ]
Su, Ting [1 ,2 ]
Guo, Yuehao [1 ,2 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[2] Hainan Univ, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Peoples R China
基金
中国国家自然科学基金;
关键词
MmWave polarized massive MIMO; 2D-DOA estimation; Polarization estimation; CSPM; RDMUSIC; ELECTROMAGNETIC VECTOR-SENSORS; DOA ESTIMATION; OPTIMIZATION; NOMA;
D O I
10.1016/j.dsp.2024.104509
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to providing greater degrees -of -freedom (DOFs) and securer communication guarantees than traditional scalar array, polarized massive multiple -input multiple -output (MIMO) technique offers a prospective insight into millimeter -wave (mmWave) communication. In this paper, a compressed two-dimensional (2D) directionof -arrival (DOA) and polarization estimation algorithm combining the compressive sampling propagator method with reduced -dimension multiple signal classification (CSPM-RDMUSIC) is developed for mmWave polarized massive MIMO systems. First, a synchronous compressive network is constructed to compress the highdimensional output into a low -dimensional one. Thereafter, a propagator is structured to acquire the signal subspace. Subsequently, accurate 2D -DOA and polarization estimation are achieved using a coarse -refined strategy, where the vector cross -product technology is investigated for coarse 2D -DOA estimation and then RDMUSIC is exploited to perform 2D local search for accurate parameter estimation. Owing to integrating the CSPM framework with the RDMUSIC strategy, the developed approach provides high -precision parameter estimation with relative computational economy, supporting mmWave communication demands. What's more, it's suitable for arbitrary array geometry with high flexibility. Several experimental results validate the superiorities of the developed framework.
引用
收藏
页数:12
相关论文
共 36 条
[1]   2D-DOD and 2D-DOA estimation using the electromagnetic vector sensors [J].
Chintagunta, Srinivasarao ;
Ponnusamy, Palanisamy .
SIGNAL PROCESSING, 2018, 147 :163-172
[2]   User Scheduling for Millimeter Wave Hybrid Beamforming Systems With Low-Resolution ADCs [J].
Choi, Jinseok ;
Lee, Gilwon ;
Evans, Brian L. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (04) :2401-2414
[3]   Real-Valued Sparse Bayesian Learning for DOA Estimation With Arbitrary Linear Arrays [J].
Dai, Jisheng ;
So, Hing Cheung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 :4977-4990
[4]   Virtual Array Interpolation for 2-D DOA and Polarization Estimation Using Coprime EMVS Array via Tensor Nuclear Norm Minimization [J].
Fu, Mingcheng ;
Zheng, Zhi ;
Wang, Wen-Qin ;
So, Hing Cheung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 :3637-3650
[5]   Coarray Interpolation for DOA Estimation Using Coprime EMVS Array [J].
Fu, Mingcheng ;
Zheng, Zhi ;
Wang, Wen-Qin ;
So, Hing Cheung .
IEEE SIGNAL PROCESSING LETTERS, 2021, 28 :548-552
[6]   Performance Investigation of NOMA Versus OMA Techniques for mmWave Massive MIMO Communications [J].
Ghosh, Joydev ;
Sharma, Vishal ;
Haci, Huseyin ;
Singh, Saurabh ;
Ra, In-Ho .
IEEE ACCESS, 2021, 9 :125300-125308
[7]   Quad-Quaternion MUSIC for DOA Estimation Using Electromagnetic Vector Sensors [J].
Gong, Xiaofeng ;
Liu, Zhiwen ;
Xu, Yougen .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
[8]  
Gu JF, 2011, IEEE INT SYMP CIRC S, P1752, DOI 10.1109/ISCAS.2011.5937922
[9]   Information-Theoretic Compressive Sensing Kernel Optimization and Bayesian Cramer-Rao Bound for Time Delay Estimation [J].
Gu, Yujie ;
Goodman, Nathan A. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (17) :4525-4537
[10]  
Gu YJ, 2017, INT CONF ACOUST SPEE, P3181, DOI 10.1109/ICASSP.2017.7952743