Enhanced CO2 Adsorption Capacity in Highly Porous Carbon Materials Derived from Melamine-Formaldehyde Resin

被引:30
|
作者
Tian, Lifeng [1 ]
Zhi, Yue [1 ]
Yu, Qiyun [1 ]
Xu, Qianyu [1 ]
Demir, Muslum [2 ,3 ]
Colak, Suleyman Gokhan [4 ]
Farghaly, Ahmed A. [5 ,6 ,7 ]
Wang, Linlin [8 ]
Hu, Xin [1 ]
机构
[1] Zhejiang Normal Univ, Key Lab, Minist Educ Adv Catalysis Mat, Jinhua 321004, Zhejiang, Peoples R China
[2] Bogazici Univ, Dept Chem Engn, TR-34342 Istanbul, Turkiye
[3] TUBITAK Marmara Res Ctr, Mat Inst, TR-41470 Gebze, Turkiye
[4] Iskenderun Tech Univ, Fac Engn & Nat Sci, Dept Mechatron Engn, TR-31200 Hatay, Turkiye
[5] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[6] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[7] Assiut Univ, Fac Sci, Chem Dept, Assiut 71516, Egypt
[8] Zhejiang Normal Univ, Coll Engn, Key Lab Urban Rail Transit Intelligent Operat & Ma, Jinhua 321004, Zhejiang, Peoples R China
关键词
ORGANIC FRAMEWORKS; ACTIVATED CARBON; CAPTURE; DIOXIDE; STORAGE;
D O I
10.1021/acs.energyfuels.4c02372
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present study explores the synthesis of N-doped carbon materials with large surface porosity using commercial melamine-formaldehyde resin as the precursor and KOH as the activator. The resin was carbonized first and then activated by KOH with varying KOH amount and activation temperature. Notably, the as-obtained sorbents display advanced porosity with the highest surface area and pore volume of 1591 m(2)/g and 0.74 cm(3)/g, respectively, along with high N content ranging from 6.43 to 18.34 wt %. Remarkably, maximum CO2 capture amounts of 5.42 and 3.52 mmol/g were accomplished at 0 and 25 degrees C, 1 bar for as-synthesized carbons. Systematic studies point out that narrow microporosity is the major factor determining the CO2 uptake of these carbons under ambient pressure. Furthermore, these sorbents display notable CO2 selectivity, rapid adsorption kinetics, moderate heat of adsorption, substantial dynamic CO2 capture capacity, and stable recyclability. These results underscore the potential of melamine-formaldehyde resin-derived N-doped porous carbon as an efficient and versatile adsorbent for CO2 capture.
引用
收藏
页码:13186 / 13195
页数:10
相关论文
共 50 条
  • [31] Highly porous carbon derived from hydrothermal-pyrolysis synergistic carbonization of biomass for enhanced CO2 capture
    Wang, Qiang
    Li, Yaru
    Yu, Zichen
    Li, Xuewen
    Yin, Shouhua
    Ji, Wen
    Hu, Yonghua
    Cai, Weiping
    Wang, Xianbiao
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 673
  • [32] Heteroatom-N,S co-doped porous carbons derived from waste biomass as bifunctional materials for enhanced CO2 adsorption and conversion
    Luo, Lan
    Yang, Chunliang
    Liu, Fei
    Zhao, Tianxiang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 320
  • [33] Activated porous carbon derived from sawdust for CO2 capture
    Foorginezhad, S.
    Zerafat, M. M.
    Asadnia, M.
    Rezvannasab, Gh
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 317
  • [34] Silicon oxycarbide-derived hierarchical porous carbon materials for rhodamine B and CO2 adsorption
    Xia, Kedong
    Li, Weichen
    Zhang, Hui
    Han, Fang
    Duan, Lingyao
    Li, Yunling
    Liu, Xiao
    RESEARCH ON CHEMICAL INTERMEDIATES, 2023, 49 (04) : 1755 - 1770
  • [35] Sewage Sludge Derived Materials for CO2 Adsorption
    Miricioiu, Marius Gheorghe
    Zaharioiu, Anca
    Oancea, Simona
    Bucura, Felicia
    Raboaca, Maria Simona
    Filote, Constantin
    Ionete, Roxana Elena
    Niculescu, Violeta Carolina
    Constantinescu, Marius
    APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [36] Sustainable Porous Carbon Materials Derived from Wood-Based Biopolymers for CO2 Capture
    Xu, Chao
    Stromme, Maria
    NANOMATERIALS, 2019, 9 (01)
  • [37] Enhanced CO2 Adsorption on Nitrogen-Doped Carbon Materials by Salt and Base Co-Activation Method
    Wei, Ruiping
    Dai, Xingchao
    Shi, Feng
    MATERIALS, 2019, 12 (08)
  • [38] Review on Nitrogen-Doped Porous Carbon Materials for CO2 Adsorption and Separation: Recent Advances and Outlook
    Li, Tongxin
    An, Xuefei
    Fu, Dong
    ENERGY & FUELS, 2023, 37 (12) : 8160 - 8179
  • [39] Facile construction of highly porous carbon materials derived from porous aromatic frameworks for greenhouse gas adsorption and separation
    Chen, Jinghu
    Jiang, Lingchang
    Wang, Wenting
    Wang, Pengyuan
    Li, Xi
    Ren, Hao
    Wang, Yangang
    MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 326
  • [40] Effective nitrogen and sulfur co-doped porous carbonaceous CO2 adsorbents derived from amino acid
    Shao, Jiawei
    Ma, Changdan
    Zhao, Jiajiang
    Wang, Linlin
    Hu, Xin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 632