Contaminant Transport Modeling and Source Attribution With Attention-Based Graph Neural Network

被引:3
|
作者
Pang, Min [1 ,2 ,3 ]
Du, Erhu [2 ,3 ]
Zheng, Chunmiao [3 ,4 ,5 ]
机构
[1] Hohai Univ, Coll Hydrol & Water Resources, Nanjing, Peoples R China
[2] Hohai Univ, Natl Key Lab Water Disaster Prevent, Nanjing, Peoples R China
[3] Hohai Univ, Yangtze Inst Conservat & Dev, Nanjing, Peoples R China
[4] Eastern Inst Technol, Eastern Inst Adv Study, Ningbo, Peoples R China
[5] Southern Univ Sci & Technol, Sch Environm Sci & Engn, Guangdong Prov Key Lab Soil & Groundwater Pollut C, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
groundwater contamination; deep learning; graph neural network; contaminant transport modeling; source attribution; POROUS-MEDIA; FLOW; PARAMETERIZATION; UNCERTAINTY;
D O I
10.1029/2023WR035278
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Groundwater contamination induced by anthropogenic activities has long been a global issue. Characterizing and modeling contaminant transport processes is crucial to groundwater protection and management. However, challenges still exist in process complexity, data constraint, and computational cost. In the era of big data, the growth of machine learning has led to new opportunities in studying contaminant transport in groundwater systems. In this work, we introduce a new attention-based graph neural network (aGNN) for modeling contaminant transport with limited monitoring data and quantifying causal connections between contaminant sources (drivers) and their spreading (outcomes). In five synthetic case studies that involve varying monitoring networks in heterogeneous aquifers, aGNN is shown to outperform LSTM-based (long-short term memory) and CNN- based (convolutional neural network) methods in multistep predictions (i.e., transductive learning). It also demonstrates a high level of applicability in inferring observations for unmonitored sites (i.e., inductive learning). Furthermore, an explanatory analysis based on aGNN quantifies the influence of each contaminant source, which has been validated by a physics-based model with consistent outcomes with an R2 value exceeding 92%. The major advantage of aGNN is that it not only has a high level of predictive power in multiple scenario evaluations but also substantially reduces computational cost. Overall, this study shows that aGNN is efficient and robust for highly nonlinear spatiotemporal learning in subsurface contaminant transport, and provides a promising tool for groundwater management involving contaminant source attribution. Groundwater contamination caused by human activities is a longstanding global challenge. Accurately characterizing and modeling the movement of contaminants is crucial for the protection and management of groundwater resources. However, the complexity of the processes, limitations in data availability, and high computational demands pose significant challenges. In the age of big data, machine learning offers new avenues for exploring contaminant transport in groundwater. In this study, we introduce a novel machine learning model called an attention-based graph neural network (aGNN) designed to model contaminant transport with sparse monitoring data and to analyze the causal relationships between contaminant sources and observed concentrations at specific locations. We conducted five synthetic case studies across diverse aquifer systems with varying monitoring setups, where aGNN demonstrated superior performance over models based on other approaches. It also proved highly capable of making inferences about pollution levels at unmonitored sites. Moreover, an explanatory analysis using aGNN effectively quantified the impact of each contaminant source, with results validated by a physics-based model. Overall, this study establishes aGNN as an efficient and robust method for complex spatiotemporal learning in subsurface contaminant transport, making it a valuable tool for groundwater management and contaminant source identification. A novel graph-based deep learning method is proposed for modeling contaminant transport constrained by monitoring data The proposed model quantifies the contribution of each potential contaminant source to the observed concentration at an arbitrary location The deep learning method substantially reduces the computational cost compared with a physics-based contaminant transport model
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Attention-Based Convolutional Neural Network for Ingredients Identification
    Chen, Shi
    Li, Ruixue
    Wang, Chao
    Liang, Jiakai
    Yue, Keqiang
    Li, Wenjun
    Li, Yilin
    ENTROPY, 2023, 25 (02)
  • [42] Attention-based neural network for polarimetric image denoising
    Liu, Hedong
    Zhang, Yizhu
    Cheng, Zhenzhou
    Zhai, Jingsheng
    Hu, Haofeng
    OPTICS LETTERS, 2022, 47 (11) : 2726 - 2729
  • [43] Retweet Prediction with Attention-based Deep Neural Network
    Zhang, Qi
    Gong, Yeyun
    Wu, Jindou
    Huang, Haoran
    Huang, Xuanjing
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 75 - 84
  • [44] Attention-based Neural Network for Traffic Sign Detection
    Zhang, Jing
    Hui, Le
    Lu, Jianfeng
    Zhu, Yuhua
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1839 - 1844
  • [45] Attention-Based Recurrent Neural Network for Multicriteria Recommendations
    Bougteb, Yahya
    Frikh, Bouchra
    Ouhbi, Brahim
    Zemmouri, El Moukhtar
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2023, 2024, 823 : 264 - 274
  • [46] Attention-based Graph Clustering Network with Dual Information Interaction
    Lin, Xiumin
    Li, Yafang
    Jia, Caiyan
    Zu, Baokai
    Zhu, Wanting
    KNOWLEDGE-BASED SYSTEMS, 2025, 310
  • [47] Attention-based Recurrent Neural Network for Location Recommendation
    Xia, Bin
    Li, Yun
    Li, Qianmu
    Li, Tao
    2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [48] Attention-Based Recurrent Neural Network for Sequence Labeling
    Li, Bofang
    Liu, Tao
    Zhao, Zhe
    Du, Xiaoyong
    WEB AND BIG DATA (APWEB-WAIM 2018), PT I, 2018, 10987 : 340 - 348
  • [49] Local Pose Optimization with an Attention-based Neural Network
    Liu, Yiling
    Wang, Hesheng
    Xu, Fan
    Wang, Yong
    Chen, Weidong
    Tang, Qirong
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 3084 - 3089
  • [50] Attention-Based SeriesNet: An Attention-Based Hybrid Neural Network Model for Conditional Time Series Forecasting
    Cheng, Yepeng
    Liu, Zuren
    Morimoto, Yasuhiko
    INFORMATION, 2020, 11 (06)