Rotating machines are an important part of industrial equipment. It is essential to improve their performance while reducing the manufacturing, operating, and maintenance costs. Ensuring their reliability is also crucial because a machine breakdown can result in significant costs and potential environmental and safety damage. Reliability-based optimization is an approach that aims to find an optimal and robust design that guarantees a machine's reliability. In this study, we focused on optimizing the shaft diameter and oil temperature of a rotor supported by hydrodynamic bearings. We considered the materials' elastic moduli, density, and bearing clearance as uncertain parameters. Our goal was to ensure 99% reliability regarding both the vibration amplitude and stability threshold. To model the machine, we used the finite element method and represented the bearings using stiffness and damping coefficients, considering the linear short bearing model. Due to the complexity of the model, we employed surrogate models to solve the reliability-based optimization problem. Our results showed that the optimization problem could be solved successfully using Kriging, polynomial chaos expansion, and polynomial chaos Kriging.
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R China
Guilin Univ Aerosp Technol, Sch Mech Engn, Guilin 541004, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R China
Xu, Bensheng
Zang, Chaoping
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R China
Zang, Chaoping
Zhang, Genbei
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R China
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R China
Guilin Univ Aerosp Technol, Sch Mech Engn, Guilin 541004, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R China
Xu, Bensheng
Zang, Chaoping
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R China
Zang, Chaoping
Zhang, Genbei
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Peoples R China