p-adic Bessel α-potentials and some of their applications

被引:0
|
作者
Torresblanca-Badillo, Anselmo [1 ]
Ospino, J. E. [2 ]
Arias, Francisco [1 ]
机构
[1] Univ Norte, Dept Matemat & Estadist, Km 5 Via Puerto Colombia, Barranquilla, Colombia
[2] Univ Atlant, Programa Matemat, Km 7 Via Puerto Colombia, Barranquilla, Colombia
关键词
p-adic analysis; Pseudo-differential operators; Sobolev spaces; Markov processes; Heat kernel; Feller semigroups; WHITE-NOISE; OPERATORS; EQUATIONS;
D O I
10.1007/s11868-024-00613-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we will study a class of pseudo-differential operators on p-adic numbers, which we will call p-adic Bessel alpha-potentials. These operators are denoted and defined in the form (E-phi,E-alpha f)(x) = -F-zeta -> x(-1) ([max{1, vertical bar phi(parallel to zeta parallel to(p))vertical bar}](-alpha) (f) over cap (zeta)), x is an element of Q(p)(n), alpha is an element of R, where f is a p-adic distribution and [max{1, vertical bar phi(parallel to zeta parallel to(p))vertical bar}](-alpha) is the symbol of the operator. We will study some properties of the convolution kernel (denoted as K-alpha) of the pseudo-differential operator E-phi,E-alpha, alpha is an element of R; and demonstrate that the family (K-alpha)(alpha>0) determines a convolution semigroup on Q(p)(n). Furthermore, we will introduce new types of Feller semigroups, and explore new Markov processes and non-homogeneous initial value problems on p-adic numbers.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] p-adic pseudodifferential operators and p-adic wavelets
    Kozyrev, SV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 138 (03) : 322 - 332
  • [32] p-adic periods, p-adic L-functions, and the p-adic uniformization of Shimura curves
    Bertolini, M
    Darmon, H
    DUKE MATHEMATICAL JOURNAL, 1999, 98 (02) : 305 - 334
  • [33] BESSEL PERIODS AND ANTICYCLOTOMIC p-ADIC SPINOR L-FUNCTIONS
    Hsieh, Ming-Lun
    Yamana, Shunsuke
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (08) : 5617 - 5672
  • [34] On bessel distributions for GL2 over a p-adic field
    Baruch, EM
    JOURNAL OF NUMBER THEORY, 1997, 67 (02) : 190 - 202
  • [35] SOME P-ADIC REPRESENTATIONS OF THE SMALE HORSESHOE
    ARROWSMITH, DK
    VIVALDI, F
    PHYSICS LETTERS A, 1993, 176 (05) : 292 - 294
  • [36] The p-adic Order of Some Fibonomial Coefficients
    Marques, Diego
    Trojovsky, Pavel
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (03)
  • [37] NORMALITY OF SOME P-ADIC PRODUCT EXPANSIONS
    KNOPFMACHER, A
    KNOPFMACHER, J
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 49 : 258 - 263
  • [38] Some properties of differentiable p-adic functions
    J. Fernández-Sánchez
    S. Maghsoudi
    D. L. Rodríguez-Vidanes
    J. B. Seoane–Sepúlveda
    Revista Matemática Complutense, 2024, 37 : 391 - 411
  • [39] Some Properties of the p-Adic Beta Function
    Menken, Hamza
    Colakoglu, Ozge
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, 8 (02): : 214 - 231
  • [40] P-ADIC GAMMA-FUNCTIONS AND THEIR APPLICATIONS
    DIAMOND, J
    LECTURE NOTES IN MATHEMATICS, 1984, 1052 : 168 - 175