Uncoupled Nonnegative Matrix Factorization with Pairwise Comparison Data

被引:0
|
作者
Kohjima, Masahiro [1 ]
机构
[1] NTT Corp, NTT Human Informat Labs, Yokosuka, Japan
来源
PROCEEDINGS OF THE 2022 ACM SIGIR INTERNATIONAL CONFERENCE ON THE THEORY OF INFORMATION RETRIEVAL, ICTIR 2022 | 2022年
关键词
uncoupled data; matrix factorization; Bregman divergence;
D O I
10.1145/3539813.3545149
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new method called uncoupled nonnegative matrix factorization (UNMF). UNMF enables us to analyze data that cannot be represented by a matrix, due to the lack of correspondence between the index and values of the matrix elements caused by e.g., data collection under the constraint of privacy protection. We derive the multiplicative update rules for parameter estimation and confirm the effectiveness of UNMF by numerical experiments.
引用
收藏
页码:2 / 6
页数:5
相关论文
共 50 条
  • [41] Entropy regularized fuzzy nonnegative matrix factorization for data clustering
    Chen, Kun
    Liang, Junchen
    Liu, Junmin
    Shen, Weilin
    Xu, Zongben
    Yao, Zhengjian
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (02) : 459 - 476
  • [42] Sparse and Unique Nonnegative Matrix Factorization Through Data Preprocessing
    Gillis, Nicolas
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 3349 - 3386
  • [43] Rank-constrained nonnegative matrix factorization for data representation
    Shu, Zhenqiu
    Wu, Xiao-Jun
    You, Congzhe
    Liu, Zhen
    Li, Peng
    Fan, Honghui
    Ye, Feiyue
    INFORMATION SCIENCES, 2020, 528 (528) : 133 - 146
  • [44] Discriminative Orthogonal Nonnegative matrix factorization with flexibility for data representation
    Li, Ping
    Bu, Jiajun
    Yang, Yi
    Ji, Rongrong
    Chen, Chun
    Cai, Deng
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (04) : 1283 - 1293
  • [45] Error Graph Regularized Nonnegative Matrix Factorization for Data Representation
    Zhu, Qiang
    Zhou, Meijun
    Liu, Junping
    NEURAL PROCESSING LETTERS, 2023, 55 (06) : 7321 - 7335
  • [46] Nonnegative matrix factorization with combined kernels for small data representation
    Hu, Liying
    Chen, Xian
    Guo, Gongde
    Chen, Lifei
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 208
  • [47] Data clustering with semi-binary Nonnegative Matrix Factorization
    Zdunek, Rafal
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2008, PROCEEDINGS, 2008, 5097 : 705 - 716
  • [48] Adaptive graph regularized nonnegative matrix factorization for data representation
    Zhang, Lin
    Liu, Zhonghua
    Pu, Jiexin
    Song, Bin
    APPLIED INTELLIGENCE, 2020, 50 (02) : 438 - 447
  • [49] Bayesian nonnegative matrix factorization in an incremental manner for data representation
    Lijun Yang
    Lulu Yan
    Xiaohui Yang
    Xin Xin
    Liugen Xue
    Applied Intelligence, 2023, 53 : 9580 - 9597
  • [50] Regularized Nonnegative Matrix Factorization for Clustering Gene Expression Data
    Liu, Weixiang
    Wang, Tianfu
    Chen, Siping
    2013 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2013,