Uncoupled Nonnegative Matrix Factorization with Pairwise Comparison Data

被引:0
|
作者
Kohjima, Masahiro [1 ]
机构
[1] NTT Corp, NTT Human Informat Labs, Yokosuka, Japan
来源
PROCEEDINGS OF THE 2022 ACM SIGIR INTERNATIONAL CONFERENCE ON THE THEORY OF INFORMATION RETRIEVAL, ICTIR 2022 | 2022年
关键词
uncoupled data; matrix factorization; Bregman divergence;
D O I
10.1145/3539813.3545149
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new method called uncoupled nonnegative matrix factorization (UNMF). UNMF enables us to analyze data that cannot be represented by a matrix, due to the lack of correspondence between the index and values of the matrix elements caused by e.g., data collection under the constraint of privacy protection. We derive the multiplicative update rules for parameter estimation and confirm the effectiveness of UNMF by numerical experiments.
引用
收藏
页码:2 / 6
页数:5
相关论文
共 50 条
  • [21] Quadratic nonnegative matrix factorization
    Yang, Zhirong
    Oja, Erkki
    PATTERN RECOGNITION, 2012, 45 (04) : 1500 - 1510
  • [22] Elastic nonnegative matrix factorization
    Xiong, He
    Kong, Deguang
    PATTERN RECOGNITION, 2019, 90 : 464 - 475
  • [23] Elastic Nonnegative Matrix Factorization
    Ballen, Peter
    Guha, Sudipto
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1271 - 1278
  • [24] ON THE COMPLEXITY OF NONNEGATIVE MATRIX FACTORIZATION
    Vavasis, Stephen A.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1364 - 1377
  • [25] Parallelism on the Nonnegative Matrix Factorization
    Mejia-Roa, Edgardo
    Garcia, Carlos
    Gomez, Jose-Ignacio
    Prieto, Manuel
    Tenllado, Christian
    Pascual-Montano, Alberto
    Tirado, Francisco
    APPLICATIONS, TOOLS AND TECHNIQUES ON THE ROAD TO EXASCALE COMPUTING, 2012, 22 : 421 - 428
  • [26] On Rationality of Nonnegative Matrix Factorization
    Chistikov, Dmitry
    Kiefer, Stefan
    Marusic, Ines
    Shirmohammadi, Mahsa
    Worrell, James
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 1290 - 1305
  • [27] WEIGHTED NONNEGATIVE MATRIX FACTORIZATION
    Kim, Yang-Deok
    Choi, Seungjin
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1541 - 1544
  • [28] On Identifiability of Nonnegative Matrix Factorization
    Fu, Xiao
    Huang, Kejun
    Sidiropoulos, Nicholas D.
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (03) : 328 - 332
  • [29] Nonnegative matrix and tensor factorization
    Cichocki, Andrzej
    Zdunek, Rafal
    Amari, Shun-Ichi
    IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) : 142 - 145
  • [30] NONNEGATIVE UNIMODAL MATRIX FACTORIZATION
    Ang, Andersen Man Shun
    Gillis, Nicolas
    Vandaele, Arnaud
    De Sterck, Hans
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3270 - 3274