Uncoupled Nonnegative Matrix Factorization with Pairwise Comparison Data

被引:0
作者
Kohjima, Masahiro [1 ]
机构
[1] NTT Corp, NTT Human Informat Labs, Yokosuka, Japan
来源
PROCEEDINGS OF THE 2022 ACM SIGIR INTERNATIONAL CONFERENCE ON THE THEORY OF INFORMATION RETRIEVAL, ICTIR 2022 | 2022年
关键词
uncoupled data; matrix factorization; Bregman divergence;
D O I
10.1145/3539813.3545149
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new method called uncoupled nonnegative matrix factorization (UNMF). UNMF enables us to analyze data that cannot be represented by a matrix, due to the lack of correspondence between the index and values of the matrix elements caused by e.g., data collection under the constraint of privacy protection. We derive the multiplicative update rules for parameter estimation and confirm the effectiveness of UNMF by numerical experiments.
引用
收藏
页码:2 / 6
页数:5
相关论文
共 24 条
[1]  
Abid A., 2017, arXiv
[2]  
[Anonymous], 2003, ANN INT ACM SIGIR C
[3]  
Banerjee A, 2005, J MACH LEARN RES, V6, P1705
[4]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[5]  
Bregman LM., 1967, USSR Comput. Math. Math. Phys, V7, P200, DOI DOI 10.1016/0041-5553(67)90040-7
[6]  
Carpentier A, 2016, JMLR WORKSH CONF PRO, V51, P658
[7]   Nonnegative matrix and tensor factorization [J].
Cichocki, Andrzej ;
Zdunek, Rafal ;
Amari, Shun-Ichi .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :142-145
[8]  
De Leeuw J., 1994, Information Systems and Data Analysis: Prospects, Foundations, Applications, P308
[9]   On the equivalence between Non-negative Matrix Factorization and Probabilistic Latent Semantic Indexing [J].
Ding, Chris ;
Li, Tao ;
Peng, Wei .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (08) :3913-3927
[10]  
Ding C, 2005, SIAM PROC S, P606