Bayesian Analysis of Multi-Factorial Experimental Designs Using SEM

被引:0
作者
Langenberg, Benedikt [1 ]
Helm, Jonathan L. [2 ]
Mayer, Axel [3 ]
机构
[1] Maastricht Univ, Maastricht, Netherlands
[2] San Diego State Univ, San Diego, CA USA
[3] Bielefeld Univ, Bielefeld, Germany
关键词
Bayesian estimation; ANOVA; growth curves; factorial designs; Monte-Carlo simulation; COVARIANCE STRUCTURE-ANALYSIS; REPEATED-MEASURES ANOVA; MAXIMUM-LIKELIHOOD; GENERAL-APPROACH; TEST STATISTICS; EFFECT SIZE; F-TEST; TESTS; MODELS; PERFORMANCE;
D O I
10.1080/00273171.2024.2315557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Latent repeated measures ANOVA (L-RM-ANOVA) has recently been proposed as an alternative to traditional repeated measures ANOVA. L-RM-ANOVA builds upon structural equation modeling and enables researchers to investigate interindividual differences in main/interaction effects, examine custom contrasts, incorporate a measurement model, and account for missing data. However, L-RM-ANOVA uses maximum likelihood and thus cannot incorporate prior information and can have poor statistical properties in small samples. We show how L-RM-ANOVA can be used with Bayesian estimation to resolve the aforementioned issues. We demonstrate how to place informative priors on model parameters that constitute main and interaction effects. We further show how to place weakly informative priors on standardized parameters which can be used when no prior information is available. We conclude that Bayesian estimation can lower Type 1 error and bias, and increase power and efficiency when priors are chosen adequately. We demonstrate the approach using a real empirical example and guide the readers through specification of the model. We argue that ANOVA tables and incomplete descriptive statistics are not sufficient information to specify informative priors, and we identify which parameter estimates should be reported in future research; thereby promoting cumulative research.
引用
收藏
页码:716 / 737
页数:22
相关论文
共 50 条
  • [31] Tuning the performance of room temperature phosphorescence sensing materials for oxygen using factorial designs
    Badía, R
    García, MED
    ANALYTICAL LETTERS, 2000, 33 (02) : 307 - 322
  • [32] Analysis of PEM fuel cell experimental data using principal component analysis and multi linear regression
    Placca, Latevi
    Kouta, Raed
    Candusso, Denis
    Blachot, Jean-Francois
    Charon, Willy
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (10) : 4582 - 4591
  • [33] Optimization of supercritical fluid derivatization and extraction of cresols in soil samples using factorial designs
    Llompart, MP
    Lorenzo, RA
    Cola, R
    JOURNAL OF MICROCOLUMN SEPARATIONS, 1996, 8 (03) : 163 - 174
  • [34] A Primer on Bayesian Analysis for Experimental Psychopathologists
    Krypotos, Angelos-Miltiadis
    Blanken, Tessa F.
    Arnaudova, Inna
    Matzke, Dora
    Beckers, Tom
    JOURNAL OF EXPERIMENTAL PSYCHOPATHOLOGY, 2017, 8 (02): : 140 - 157
  • [35] Application of factorial design for modeling reverse osmosis process using thin film composite polyamide membrane: a theoretical analysis and experimental validation
    Hamdi, Mohamed Mouldi
    Thiru, S.
    Gzara, Lassaad
    Bin Mahfouz, A. S.
    DESALINATION AND WATER TREATMENT, 2018, 124 : 37 - 52
  • [36] BAYESIAN MULTIFRACTAL ANALYSIS OF MULTI-TEMPORAL IMAGES USING SMOOTH PRIORS
    Combrexelle, S.
    Wendt, H.
    Tourneret, J. -Y
    Abry, P.
    McLaughlin, S.
    2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [37] Sensitivity Analysis of Cutting Force on Milling Process using Factorial Experimental Planning and Artificial Neural Networks
    Nascimento, E. O.
    Oliveira, L. N.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (12) : 4811 - 4820
  • [38] Sensitivity Analysis by the 2k Factorial Experimental Design of CO2 Capture with Amine Gas Treating Process Using Aspen Plus
    Chuenphan, Thapanat
    Yurata, Tarabordin
    Sema, Teerawat
    Chalermsinsuwan, Benjapon
    ENGINEERING JOURNAL-THAILAND, 2021, 25 (04): : 95 - 104
  • [39] Forward stepwise random forest analysis for experimental designs
    Lin, Chang-Yun
    JOURNAL OF QUALITY TECHNOLOGY, 2021, 53 (05) : 488 - 504
  • [40] What makes Jordanian residents buy smart home devices?: A factorial investigation using PLS-SEM
    Mashal, Ibrahim
    Shuhaiber, Ahmed
    KYBERNETES, 2019, 48 (08) : 1681 - 1698