Disentangled Relational Graph Neural Network with Contrastive Learning for knowledge graph completion

被引:1
|
作者
Yin, Hong [1 ]
Zhong, Jiang [1 ]
Li, Rongzhen [1 ]
Li, Xue [2 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[2] Univ Queensland, Sch Elect Engn & Comp Sci, Brisbane, Qld 4072, Australia
关键词
Knowledge graph completion; Disentangled representation learning; Graph neural network; Contrastive learning;
D O I
10.1016/j.knosys.2024.111828
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning disentangled entity representations has garnered significant attention in the field of knowledge graph completion (KGC). However, the existing methods inherently overlook the indicative role of relations and the correlation between latent factors and relations, leading to suboptimal entity representations for KGC tasks. In the current study, we introduce the Disentangled Relational Graph Neural Network with Contrastive Learning (DRGCL) method, designed to acquire disentangled entity representations guided by relations. In particular, we first devise the factor -aware relational message aggregation approach to learn entity representations under each semantic subspace and obtain latent factor representations by attention mechanisms. Subsequently, we propose a discrimination objective for factor -subspace pairs using a contrastive learning approach, which compels the factor representations to distinctly capture the information associated with different latent factors and promote the consistency between factor representations and semantic subspaces. Through disentanglement, our model can generate relation -aware scores tailored to the provided scenario. Extensive experiments have been conducted on three benchmark datasets and the results demonstrate the superiority of our method compared with strong baseline models.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A dynamic graph attention network with contrastive learning for knowledge graph completion
    Xujiang Li
    Jie Hu
    Jingling Wang
    Tianrui Li
    World Wide Web, 2025, 28 (4)
  • [2] Knowledge graph completion based on graph contrastive attention network
    Liu D.
    Fang Q.
    Zhang X.
    Hu J.
    Qian S.
    Xu C.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (08): : 1428 - 1435
  • [3] Mixed-Curvature Multi-Relational Graph Neural Network for Knowledge Graph Completion
    Wang, Shen
    Wei, Xiaokai
    dos Santos, Cicero Nogueira
    Wang, Zhiguo
    Nallapati, Ramesh
    Arnold, Andrew
    Xiang, Bing
    Yu, Philip S.
    Cruz, Isabel F.
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 1761 - 1771
  • [4] PRGNN: Modeling high-order proximity with relational graph neural network for knowledge graph completion
    Zhu, Danhao
    NEUROCOMPUTING, 2024, 594
  • [5] Disentangled Graph Contrastive Learning With Independence Promotion
    Li, Haoyang
    Zhang, Ziwei
    Wang, Xin
    Zhu, Wenwu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (08) : 7856 - 7869
  • [6] Knowledge Graph Completion Based on Contrastive Learning for Diet Therapy
    Yang, Kaidi
    Lin, Yangguang
    Mi, Xuanhan
    Li, Yuxun
    Lin, Xiao
    Li, Dongmei
    27TH IEEE/ACIS INTERNATIONAL SUMMER CONFERENCE ON SOFTWARE ENGINEERING ARTIFICIAL INTELLIGENCE NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING, SNPD 2024-SUMMER, 2024, : 141 - 145
  • [7] An Overview of Research on Knowledge Graph Completion Based on Graph Neural Network
    Yue W.
    Haichun S.
    Data Analysis and Knowledge Discovery, 2024, 8 (03) : 10 - 28
  • [8] One-shot knowledge graph completion based on disentangled representation learning
    Zhang, Youmin
    Sun, Lei
    Wang, Ye
    Liu, Qun
    Liu, Li
    Neural Computing and Applications, 2024, 36 (32) : 20277 - 20293
  • [9] Graph Attention Network with Relational Dynamic Factual Fusion for Knowledge Graph Completion
    Yu, Mei
    Zuo, Yilin
    Zhang, Wenbin
    Zhao, Mankun
    Xu, Tianyi
    Zhao, Yue
    Guo, Jiujiang
    Yu, Jian
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT IV, ECML PKDD 2024, 2024, 14944 : 89 - 106
  • [10] MRGAT: Multi-Relational Graph Attention Network for knowledge graph completion
    Dai, Guoquan
    Wang, Xizhao
    Zou, Xiaoying
    Liu, Chao
    Cen, Si
    NEURAL NETWORKS, 2022, 154 : 234 - 245