Engineering Electrodeposition for Next-generation Batteries

被引:1
作者
Fuller, Stephen T. [1 ]
Huang, Yonglin [2 ]
Wu, Ruixin [3 ]
Han, Fudong [4 ]
Zheng, J. X. Kent [5 ,6 ]
Vasiljevic, Natasa [7 ]
机构
[1] Univ Texas Austin UT Austin, Chem Engn, Austin, TX 78712 USA
[2] Rensselaer Polytech Inst RPI, Mech Engn, Troy, NY USA
[3] RPI, Mech Engn, Troy, NY USA
[4] RPI, Mechanical Aerosp & Nucl Engn, Troy, NY USA
[5] UT Austin, Dept Chem Engn, Dept Phys, Austin, TX USA
[6] UT Austin, Texas Mat Inst, Austin, TX USA
[7] Univ Bristol, Sch Phys, Bristol, England
关键词
electrodeposition; batteries; anodes; LITHIUM DENDRITES; METAL; DISSOLUTION; DEPOSITION; GROWTH; LIQUID;
D O I
10.1149/2.F10242IF
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The redox reaction has been utilized since ancient times. This utilization is due, in part, to the simplicity of the reaction and the ubiquity of the materials involved. Recently, there has been a resurgence of interest from the battery research community in the development of metal anodes that rely solely on this type of simple metal redox reaction, also known as the plating/stripping or, interchangeably, the deposition/dissolution reaction in the electrochemistry context. The metal anodes feature simple redox chemistry by design and remarkably improved energy density. Metal electrodes of this kind, especially Li, have been dubbed the "Holy Grail" for battery anodes.
引用
收藏
页码:55 / 60
页数:6
相关论文
共 40 条
  • [1] Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
    Albertus, Paul
    Babinec, Susan
    Litzelman, Scott
    Newman, Aron
    [J]. NATURE ENERGY, 2018, 3 (01): : 16 - 21
  • [2] Dendritic growth mechanisms in lithium/polymer cells
    Brissot, C
    Rosso, M
    Chazalviel, JN
    Lascaud, S
    [J]. JOURNAL OF POWER SOURCES, 1999, 81 : 925 - 929
  • [3] SURFACE BRIGHTENING DURING HIGH-RATE NICKEL DISSOLUTION IN NITRATE ELECTROLYTES
    DATTA, M
    LANDOLT, D
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1975, 122 (11) : 1466 - 1472
  • [4] TRANSPORT NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION
    DEJONGHE, LC
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (04) : 752 - 755
  • [5] SLOW DEGRADATION AND ELECTRON CONDUCTION IN SODIUM-BETA-ALUMINAS
    DEJONGHE, LC
    FELDMAN, L
    BEUCHELE, A
    [J]. JOURNAL OF MATERIALS SCIENCE, 1981, 16 (03) : 780 - 786
  • [6] Quantifying inactive lithium in lithium metal batteries
    Fang, Chengcheng
    Li, Jinxing
    Zhang, Minghao
    Zhang, Yihui
    Yang, Fan
    Lee, Jungwoo Z.
    Lee, Min-Han
    Alvarado, Judith
    Schroeder, Marshall A.
    Yang, Yangyuchen
    Lu, Bingyu
    Williams, Nicholas
    Ceja, Miguel
    Yang, Li
    Cai, Mei
    Gu, Jing
    Xu, Kang
    Wang, Xuefeng
    Meng, Ying Shirley
    [J]. NATURE, 2019, 572 (7770) : 511 - +
  • [7] Han F., 2018, Adv Energy Mat
  • [8] High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
    Han, Fudong
    Westover, Andrew S.
    Yue, Jie
    Fan, Xiulin
    Wang, Fei
    Chi, Miaofang
    Leonard, Donovan N.
    Dudney, Nancyj
    Wang, Howard
    Wang, Chunsheng
    [J]. NATURE ENERGY, 2019, 4 (03) : 187 - 196
  • [9] Higgins T. W, 1962, The Causes and Prevention of Dendritic Growth in Zinc Electrodeposition
  • [10] Janek J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.141, 10.1038/NENERGY.2016.141]