ADAPTIVE COARSE SPACES FOR FETI-DP IN THREE DIMENSIONS

被引:44
作者
Klawonn, Axel [1 ]
Kuehn, Martin [1 ]
Rheinbach, Oliver [2 ]
机构
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
[2] Tech Univ Bergakad Freiberg, Inst Numer Math & Optimierung, Fak Math & Informat, D-09596 Freiberg, Germany
关键词
FETI-DP; eigenvalue problem; coarse space; domain decomposition; adaptive; BDDC; elasticity; almost incompressible; DOMAIN DECOMPOSITION PRECONDITIONERS; ITERATIVE SUBSTRUCTURING METHODS; LINEAR ELASTICITY; MULTISCALE FLOWS; BDDC; DEFLATION; CONNECTIONS; SYSTEMS;
D O I
10.1137/15M1049610
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An adaptive coarse space approach including a condition number bound for dual primal finite element tearing and interconnecting (FETI-DP) methods applied to three dimensional problems with coefficient jumps inside subdomains and across subdomain boundaries is presented. The approach is based on a known adaptive coarse space approach enriched by a small number of additional local edge eigenvalue problems. These edge eigenvalue problems serve to make the method robust and permit a condition number bound which depends only on the tolerance of the local eigenvalue problems and some properties of the domain decomposition. The introduction of the edge eigenvalue problems thus turns a well-known condition number indicator for FETI-DP and balancing domain decomposition by constraints (BDDC) methods into a condition number estimate. Numerical results are presented for linear elasticity and heterogeneous materials supporting our theoretical findings. The problems considered include those with random coefficients and almost incompressible material components.
引用
收藏
页码:A2880 / A2911
页数:32
相关论文
共 65 条
[1]  
[Anonymous], 2003, Generalized Inverses-Theory and Applications
[2]  
[Anonymous], 2005, SPRINGER SER COMPUT
[3]  
Beirao da Veiga L., 2015, TR2015977 NYU COUR I
[4]  
BEIRAO DA VEIGA L., 2015, LECT NOTES COMPUT SC, V103, P573
[5]  
Bjorstad PE, 2002, LECT NOTES COMPUT SC, V2328, P387
[6]  
Bjorstad PE, 2001, LECT NOTES COMPUT SC, V1947, P373
[7]  
Calvo J. G., 2015, TR2015979 NYU COUR I
[8]   ISOGEOMETRIC BDDC PRECONDITIONERS WITH DELUXE SCALING [J].
da Veiga, L. Beirao ;
Pavarino, L. F. ;
Scacchi, S. ;
Widlund, O. B. ;
Zampini, S. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03) :A1118-A1139
[9]  
Dohrmann C., 2013, NUMA SEM JKU LINZ LI
[10]  
Dohrmann C. R., 2015, 23 INT C DOM DEC MET