On a class of nonhomogeneous anisotropic elliptic problem with variable exponents

被引:3
作者
Allalou, Mouad [1 ]
El Ouaarabi, Mohamed [1 ,2 ]
Raji, Abderrahmane [1 ]
机构
[1] Sultan Moulay Slimane Univ, Fac Sci & Tech, Appl Math & Sci Comp Lab, BP 523, Beni Mellal 23000, Morocco
[2] Hassan II Univ, Fac Sci Ain Chock, Fundamental & Appl Math Lab, BP 5366, Casablanca 20100, Morocco
关键词
Anisotropic elliptic problem; Variable exponents; Sobolev-type spaces; No-flux boundary conditions; Weak solution; Topological degree; FUNCTIONALS; EXISTENCE; EQUATIONS; SPACES;
D O I
10.1007/s12215-024-01100-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this investigation, we study the existence of weak solution for a class of nonhomogeneous anisotropic elliptic problem. These problems involve the anisotropic operators with variable exponents. Based on the topological degree theory concerning a specific subset of demicontinuous operators under generalized (S+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S_+)$$\end{document} and the theory of anisotropic Sobolev spaces with variable exponent, we demonstrate the existence of weak solution for this problem. Our findings are applicable to problems with no-flux boundary conditions, and they extend and generalize several results previously reported in the literature.
引用
收藏
页码:3195 / 3209
页数:15
相关论文
共 40 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]   On a class of obstacle problem via Young measure in generalized Sobolev space [J].
Allalou, Mouad ;
El Ouaarabi, Mohamed ;
El Hammar, Hasnae ;
Raji, Abderrahmane .
ADVANCES IN OPERATOR THEORY, 2024, 9 (03)
[3]  
[Anonymous], 1961, Uspehi Mat. Nauk, DOI DOI 10.1070/RM1961V016N05ABEH004113
[4]   Extension of the Leray-Schauder degree for abstract Hammerstein type mappings [J].
Berkovits, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (01) :289-310
[5]  
Boureanu MM, 2013, ELECTRON J DIFFER EQ
[6]   INFINITELY MANY SOLUTIONS FOR A CLASS OF DEGENERATE ANISOTROPIC ELLIPTIC PROBLEMS WITH VARIABLE EXPONENT [J].
Boureanu, Maria-Magdalena .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (05) :2291-2310
[7]   Existence of solutions for p(x)-Laplacian problems on a bounded domain [J].
Chabrowski, J ;
Fu, YQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (02) :604-618
[8]   On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applications [J].
Chems Eddine, Nabil ;
Ragusa, Maria Alessandra ;
Repovs, Dusan D. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (02) :725-756
[9]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[10]   On the local behavior of local weak solutions to some singular anisotropic elliptic equations [J].
Ciani, Simone ;
Skrypnik, Igor I. ;
Vespri, Vincenzo .
ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) :237-265