On Predictive Planning and Counterfactual Learning in Active Inference

被引:0
作者
Paul, Aswin [1 ,2 ,3 ]
Isomura, Takuya [4 ]
Razi, Adeel [1 ,5 ,6 ]
机构
[1] Monash Univ, Turner Inst Brain & Mental Hlth, Sch Psychol Sci, Clayton, Vic 3800, Australia
[2] IITB, Monash Res Acad, Mumbai 400076, India
[3] Indian Inst Technol, Dept Elect Engn, Mumbai 400076, India
[4] RIKEN Ctr Brain Sci, Brain Intelligence Theory Unit, Wako, Saitama 3510106, Japan
[5] UCL, Wellcome Trust Ctr Human Neuroimaging, London WC1N 3AR, England
[6] CIFAR, CIFAR Azrieli Global Scholars Program, Toronto, ON M5G 1M1, Canada
基金
日本科学技术振兴机构; 英国医学研究理事会; 澳大利亚研究理事会; 日本学术振兴会;
关键词
active inference; decision making; data complexity trade-off; hybrid models; FREE-ENERGY PRINCIPLE;
D O I
10.3390/e26060484
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given the rapid advancement of artificial intelligence, understanding the foundations of intelligent behaviour is increasingly important. Active inference, regarded as a general theory of behaviour, offers a principled approach to probing the basis of sophistication in planning and decision-making. This paper examines two decision-making schemes in active inference based on "planning" and "learning from experience". Furthermore, we also introduce a mixed model that navigates the data complexity trade-off between these strategies, leveraging the strengths of both to facilitate balanced decision-making. We evaluate our proposed model in a challenging grid-world scenario that requires adaptability from the agent. Additionally, our model provides the opportunity to analyse the evolution of various parameters, offering valuable insights and contributing to an explainable framework for intelligent decision-making.
引用
收藏
页数:14
相关论文
共 36 条
[1]  
Albarracin M., 2023, International Workshop on Active Inference, P123, DOI [DOI 10.1007/978-3-031-47958-8_9, 10.1007/978-3-031-47958-89]
[2]   Explainable artificial intelligence: an analytical review [J].
Angelov, Plamen P. ;
Soares, Eduardo A. ;
Jiang, Richard ;
Arnold, Nicholas I. ;
Atkinson, Peter M. .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (05)
[3]   NEURONLIKE ADAPTIVE ELEMENTS THAT CAN SOLVE DIFFICULT LEARNING CONTROL-PROBLEMS [J].
BARTO, AG ;
SUTTON, RS ;
ANDERSON, CW .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1983, 13 (05) :834-846
[4]  
Brockman G, 2016, Arxiv, DOI arXiv:1606.01540
[5]   How Active Inference Could Help Revolutionise Robotics [J].
Da Costa, Lancelot ;
Lanillos, Pablo ;
Sajid, Noor ;
Friston, Karl ;
Khan, Shujhat .
ENTROPY, 2022, 24 (03)
[6]   Active inference on discrete state-spaces: A synthesis [J].
Da Costa, Lancelot ;
Parr, Thomas ;
Sajid, Noor ;
Veselic, Sebastijan ;
Neacsu, Victorita ;
Friston, Karl .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2020, 99
[7]  
Das A., 2020, arXiv, DOI [DOI 10.48550/ARXIV.2006.11371, 10.48550/arXiv.2006.11371]
[8]   Losing Ourselves: Active Inference, Depersonalization, and Meditation [J].
Deane, George ;
Miller, Mark ;
Wilkinson, Sam .
FRONTIERS IN PSYCHOLOGY, 2020, 11
[9]   A hybrid model for the neural representation of complex mental processing in the human brain [J].
Fehr, Thorsten .
COGNITIVE NEURODYNAMICS, 2013, 7 (02) :89-103
[10]  
Fountas Z, 2020, Arxiv, DOI [arXiv:2006.04176, DOI 10.5555/3495724.3496702]