Steel Surface Defect Detection Based on Improved YOLOv7

被引:0
作者
Li, Ming [1 ]
Wei, Lisheng [2 ]
Zheng, Bowen [1 ]
机构
[1] Anhui Polytech Univ, Sch Elect Engn, Wuhu, Peoples R China
[2] Anhui Key Lab Elect Drive & Control, Wuhu, Peoples R China
来源
2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS, ICCCR 2024 | 2024年
关键词
target detection; defect detection; YOLOv7; GAMAttention; loss function;
D O I
10.1109/ICCCR61138.2024.10585576
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming at the current problem of steel surface defect detection with low accuracy and slow speed, which can easily lead to misdetection and omission, an algorithm for steel surface defect detection based on improved YOLOv7 is proposed. Firstly, the GAM (Global Attention Mechanism) attention mechanism is introduced, while CNeB and C3C2 are added to improve the feature extraction ability of the model by reducing the information approximation and amplifying the global interaction representation. Secondly, the WIoU (Wise-IoU) loss function is used to improve the convergence speed at the late stage of model training. Finally, the improved YOLOv7 is compared with other models. The experimental results show that the algorithm of this paper has an average detection accuracy (mAP) of 72.9% on the NEU-DET dataset, which is 4.1% higher compared with the original YOLOv7 algorithm, and the detection time is reduced by 63.6% under the same conditions, which verifies the effectiveness and feasibility of this paper's algorithm, and it has a certain value of application in industrial applications.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 50 条
  • [21] Mine Personnel Detection Algorithm Based on Improved YOLOv7
    Shao X.
    Li X.
    Yang Y.
    Yuan Z.
    Yang T.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2024, 53 (03): : 414 - 423
  • [22] MCA-YOLOv7: An Improved UAV Target Detection Algorithm Based on YOLOv7
    Qin, Zhiyong
    Chen, Dike
    Wang, Hongyuan
    IEEE ACCESS, 2024, 12 : 42642 - 42650
  • [23] Improved Steel Surface Defect Detection Algorithm Based on YOLOv8
    You, Congzhe
    Kong, Haozheng
    IEEE ACCESS, 2024, 12 : 99570 - 99577
  • [24] Surface defect detection of steel based on improved YOLOv5 algorithm
    Jiang, Yiwen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19858 - 19870
  • [25] Research on Insulator Defect Detection Based on Improved YOLOv7 and Multi-UAV Cooperative System
    Chang, Rong
    Zhou, Shuai
    Zhang, Yi
    Zhang, Nanchuan
    Zhou, Chengjiang
    Li, Mengzhen
    COATINGS, 2023, 13 (05)
  • [26] Strip steel surface defect detection based on lightweight YOLOv5
    Zhang, Yongping
    Shen, Sijie
    Xu, Sen
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [27] Tea Buds Detection in Complex Background Based on Improved YOLOv7
    Meng, Junquan
    Kang, Feng
    Wang, Yaxiong
    Tong, Siyuan
    Zhang, Chenxi
    Chen, Chongchong
    IEEE ACCESS, 2023, 11 : 88295 - 88304
  • [28] An efficient method of pavement distress detection based on improved YOLOv7
    Yi, Cancan
    Liu, Jun
    Huang, Tao
    Xiao, Han
    Guan, Hui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [29] Detection of potato seed buds based on an improved YOLOv7 model
    Zhang W.
    Zhang H.
    Liu S.
    Zeng X.
    Mu G.
    Zhang T.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (20): : 148 - 158
  • [30] Research on Improved YOLOv7 for Traffic Obstacle Detection
    Yang, Yifan
    Cui, Song
    Xiang, Xuan
    Bai, Yuxing
    Zang, Liguo
    Ding, Hongshan
    WORLD ELECTRIC VEHICLE JOURNAL, 2025, 16 (01):