Steel Surface Defect Detection Based on Improved YOLOv7

被引:0
作者
Li, Ming [1 ]
Wei, Lisheng [2 ]
Zheng, Bowen [1 ]
机构
[1] Anhui Polytech Univ, Sch Elect Engn, Wuhu, Peoples R China
[2] Anhui Key Lab Elect Drive & Control, Wuhu, Peoples R China
来源
2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS, ICCCR 2024 | 2024年
关键词
target detection; defect detection; YOLOv7; GAMAttention; loss function;
D O I
10.1109/ICCCR61138.2024.10585576
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming at the current problem of steel surface defect detection with low accuracy and slow speed, which can easily lead to misdetection and omission, an algorithm for steel surface defect detection based on improved YOLOv7 is proposed. Firstly, the GAM (Global Attention Mechanism) attention mechanism is introduced, while CNeB and C3C2 are added to improve the feature extraction ability of the model by reducing the information approximation and amplifying the global interaction representation. Secondly, the WIoU (Wise-IoU) loss function is used to improve the convergence speed at the late stage of model training. Finally, the improved YOLOv7 is compared with other models. The experimental results show that the algorithm of this paper has an average detection accuracy (mAP) of 72.9% on the NEU-DET dataset, which is 4.1% higher compared with the original YOLOv7 algorithm, and the detection time is reduced by 63.6% under the same conditions, which verifies the effectiveness and feasibility of this paper's algorithm, and it has a certain value of application in industrial applications.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 50 条
  • [1] Research on Surface Defect Detection of Strip Steel Based on Improved YOLOv7
    Lv, Baozhan
    Duan, Beiyang
    Zhang, Yeming
    Li, Shuping
    Wei, Feng
    Gong, Sanpeng
    Ma, Qiji
    Cai, Maolin
    SENSORS, 2024, 24 (09)
  • [2] Research on Low Contrast Surface Defect Detection Method Based on Improved YOLOv7
    Chen, Shuang
    Li, Weipeng
    Yan, Xiang
    Liu, Wen
    Chen, Chao
    Liao, Jinwei
    Chen, Xu
    Shu, Jianqi
    IEEE ACCESS, 2024, 12 : 179997 - 180008
  • [3] Research on Automated Fiber Placement Surface Defect Detection Based on Improved YOLOv7
    Wen, Liwei
    Li, Shihao
    Dong, Zhentao
    Shen, Haiqing
    Xu, Entao
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [4] Improved YOLOv7 model for insulator defect detection
    Wang, Zhenyue
    Yuan, Guowu
    Zhou, Hao
    Ma, Yi
    Ma, Yutang
    Chen, Dong
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (04): : 2880 - 2896
  • [5] YOLOv7-SiamFF: Industrial defect detection algorithm based on improved YOLOv7
    Yi, Feifan
    Zhang, Haigang
    Yang, Jinfeng
    He, Liming
    Mohamed, Ahmad Sufril Azlan
    Gao, Shan
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 114
  • [6] An Enhanced Detection Method of PCB Defect Based on Improved YOLOv7
    Yang, Yujie
    Kang, Haiyan
    ELECTRONICS, 2023, 12 (09)
  • [7] A Photovoltaic Panel Defect Detection Method Based on the Improved Yolov7
    Liu, Hongzhi
    Zhang, Fenghe
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 359 - 362
  • [8] Lightweight Model for Pavement Defect Detection Based on Improved YOLOv7
    Huang, Peile
    Wang, Shenghuai
    Chen, Jianyu
    Li, Weijie
    Peng, Xing
    SENSORS, 2023, 23 (16)
  • [9] Improved YOLOv7-based steel surface defect detection algorithm
    Xie, Yinghong
    Yin, Biao
    Han, Xiaowei
    Hao, Yan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 346 - 368
  • [10] Defect detection of small object solder joints based on improved YOLOv7
    Liu, Zhaolong
    Cao, Wei
    Gao, Junwei
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (10) : 1332 - 1340