Quantum Computation of Conical Intersections on a Programmable Superconducting Quantum Processor

被引:3
作者
Zhao, Shoukuan [1 ]
Tang, Diandong [2 ]
Xiao, Xiaoxiao [2 ]
Wang, Ruixia [1 ]
Sun, Qiming [3 ]
Chen, Zhen [1 ]
Cai, Xiaoxia [1 ]
Li, Zhendong [2 ]
Yu, Haifeng [1 ,4 ]
Fang, Wei-Hai [2 ]
机构
[1] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[2] Beijing Normal Univ, Minist Educ, Coll Chem, Key Lab Theoret & Computat Photochem, Beijing 100875, Peoples R China
[3] Quantum Engine LLC, Lacey, WA 98516 USA
[4] Hefei Natl Lab, Hefei 230088, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 28期
基金
中国国家自然科学基金;
关键词
EIGENSOLVER; CHEMISTRY; DYNAMICS; STATES;
D O I
10.1021/acs.jpclett.4c01314
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conical intersections (CIs) are pivotal in many photochemical processes. Traditional quantum chemistry methods, such as the state-average multiconfigurational methods, face computational hurdles in solving the electronic Schr & ouml;dinger equation within the active space on classical computers. While quantum computing offers a potential solution, its feasibility in studying CIs, particularly on real quantum hardware, remains largely unexplored. Here, we present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent field method based on the variational quantum eigensolver (VQE-SA-CASSCF) on a superconducting quantum processor. This approach is applied to investigate CIs in two prototypical systems & horbar;ethylene (C2H4) and triatomic hydrogen (H-3). We illustrate that VQE-SA-CASSCF, coupled with ongoing hardware and algorithmic enhancements, can lead to a correct description of CIs on existing quantum devices. These results lay the groundwork for exploring the potential of quantum computing to study CIs in more complex systems in the future.
引用
收藏
页码:7244 / 7253
页数:10
相关论文
共 84 条
[1]   Introduction of n-electron valence states for multireference perturbation theory [J].
Angeli, C ;
Cimiraglia, R ;
Evangelisti, S ;
Leininger, T ;
Malrieu, JP .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (23) :10252-10264
[2]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[3]   Quantum Algorithms for Quantum Chemistry and Quantum Materials Science [J].
Bauer, Bela ;
Bravyi, Sergey ;
Motta, Mario ;
Chan, Garnet Kin-Lic .
CHEMICAL REVIEWS, 2020, 120 (22) :12685-12717
[4]   Improving the Accuracy of Variational Quantum Eigensolvers with Fewer Qubits Using Orbital Optimization [J].
Bierman, Joel ;
Li, Yingzhou ;
Lu, Jianfeng .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, :790-798
[5]   Low-cost error mitigation by symmetry verification [J].
Bonet-Monroig, X. ;
Sagastizabal, R. ;
Singh, M. ;
O'Brien, T. E. .
PHYSICAL REVIEW A, 2018, 98 (06)
[6]   Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space [J].
Booth, George H. ;
Thom, Alex J. W. ;
Alavi, Ali .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (05)
[7]   Quantum computation of molecular response properties [J].
Cai, Xiaoxia ;
Fang, Wei-Hai ;
Fan, Heng ;
Li, Zhendong .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[8]   Quantum Chemistry in the Age of Quantum Computing [J].
Cao, Yudong ;
Romero, Jonathan ;
Olson, Jonathan P. ;
Degroote, Matthias ;
Johnson, Peter D. ;
Kieferova, Maria ;
Kivlichan, Ian D. ;
Menke, Tim ;
Peropadre, Borja ;
Sawaya, Nicolas P. D. ;
Sim, Sukin ;
Veis, Libor ;
Aspuru-Guzik, Alan .
CHEMICAL REVIEWS, 2019, 119 (19) :10856-10915
[9]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[10]   The Density Matrix Renormalization Group in Quantum Chemistry [J].
Chan, Garnet Kin-Lic ;
Sharma, Sandeep .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 62, 2011, 62 :465-481