Gravitational wave memory and quantum Michelson interferometer

被引:0
|
作者
Guo, Zhong-Kai [1 ,2 ]
Wang, Xiao-Yong [1 ]
机构
[1] China Acad Space Technol, Beijing Inst Space Mech & Elect, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
GENERAL RELATIVITY; RADIATION-PRESSURE; OSCILLATOR; NOISE;
D O I
10.1103/PhysRevD.109.124017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examined the output of a quantum Michelson interferometer incorporating the combined effects of nonlinear optomechanical interaction and time-varying gravitational fields. Our findings indicate a deviation from the standard relationship between the phase shift of the interferometer's output and the amplitude of gravitational waves. This deviation, a slight offset in direct proportionality, is associated with the gravitational wave memory effect under the conventional settings of interferometer parameters. Furthermore, the results suggest that consecutive gravitational wave memory, or the stochastic gravitational wave memory background (SGWMB), contributes not only to the classical red noise spectrum but also to a quantum red noise spectrum through this new mechanism. This leads to a novel quantum noise limit for interferometers, which may be crucial for higher precision detection system. Our analysis potentially offers a more accurate description of quantum interferometers responding to gravitational waves and applies to other scenarios involving time-varying gravitational fields. It also provides insights and experimental approaches for exploring how to unify the quantum effects of macroscopic objects and gravitation.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Modifications to gravitational wave equation from canonical quantum gravity
    Dapor, Andrea
    Liegener, Klaus
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (08):
  • [32] Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors
    McClelland, David E.
    Mavalvala, Nergis
    Chen, Yanbei
    Schnabel, Roman
    LASER & PHOTONICS REVIEWS, 2011, 5 (05) : 677 - 696
  • [33] Shock wave quantum memory in shocked detector
    Majhi, Bibhas Ranjan
    MODERN PHYSICS LETTERS A, 2021, 36 (26)
  • [34] Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array
    Wang, J. B.
    Hobbs, G.
    Coles, W.
    Shannon, R. M.
    Zhu, X. J.
    Madison, D. R.
    Kerr, M.
    Ravi, V.
    Keith, M. J.
    Manchester, R. N.
    Levin, Y.
    Bailes, M.
    Bhat, N. D. R.
    Burke-Spolaor, S.
    Dai, S.
    Oslowski, S.
    van Straten, W.
    Toomey, L.
    Wang, N.
    Wen, L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 446 (02) : 1657 - 1671
  • [35] The NANOGrav 12.5 yr Data Set: Search for Gravitational Wave Memory
    Agazie, Gabriella
    Arzoumanian, Zaven
    Baker, Paul T.
    Becsy, Bence
    Blecha, Laura
    Blumer, Harsha
    Brazier, Adam
    Brook, Paul R.
    Burke-Spolaor, Sarah
    Burnette, Rand
    Case, Robin
    Casey-Clyde, J. Andrew
    Charisi, Maria
    Chatterjee, Shami
    Cohen, Tyler
    Cordes, James M.
    Cornish, Neil J.
    Crawford, Fronefield
    Cromartie, H. Thankful
    Decesar, Megan E.
    Degan, Dallas
    Demorest, Paul B.
    Dolch, Timothy
    Drachler, Brendan
    Ellis, Justin A.
    Ferdman, Robert D.
    Ferrara, Elizabeth C.
    Fiore, William
    Fonseca, Emmanuel
    Freedman, Gabriel E.
    Garver-Daniels, Nate
    Gentile, Peter A.
    Glaser, Joseph
    Good, Deborah C.
    Gultekin, Kayhan
    Hazboun, Jeffrey S.
    Jennings, Ross J.
    Johnson, Aaron D.
    Jones, Megan L.
    Kaiser, Andrew R.
    Kaplan, David L.
    Kelley, Luke Zoltan
    Key, Joey S.
    Laal, Nima
    Lam, Michael T.
    Lamb, William G.
    Lazio, T. Joseph W.
    Lewandowska, Natalia
    Liu, Tingting
    Lorimer, Duncan R.
    ASTROPHYSICAL JOURNAL, 2024, 963 (01)
  • [36] Searching for gravitational waves with a geostationary interferometer
    Tinto, Massimo
    de Araujo, Jose C. N.
    Aguiar, Odylio D.
    Alves, Marcio E. S.
    ASTROPARTICLE PHYSICS, 2013, 48 : 50 - 60
  • [37] Cosmic-ray noise and gravitational wave antennas at the quantum limit
    Magalhaes, NS
    Aguiar, OD
    Frajuca, C
    Marinho, RM
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 457 (1-2) : 175 - 179
  • [38] Application of Spatio-Temporal Spectral Analysis for Detection of Seismic Waves in Gravitational-Wave Interferometer
    Szymko, Robert
    Denys, Mateusz
    Bulik, Tomasz
    Idzkowski, Bartosz
    Kutynia, Adam
    Nikliborc, Krzysztof
    Suchinski, Maciej
    GALAXIES, 2021, 9 (03):
  • [39] Forecasts for detecting the gravitational-wave memory effect with Advanced LIGO and Virgo
    Boersma, Oliver M.
    Nichols, David A.
    Schmidt, Patricia
    PHYSICAL REVIEW D, 2020, 101 (08)
  • [40] Gravitational wave memory of the binary black hole events in GWTC-2
    Zhao, Zhi-Chao
    Liu, Xiaolin
    Cao, Zhoujian
    He, Xiaokai
    PHYSICAL REVIEW D, 2021, 104 (06)