Gravitational wave memory and quantum Michelson interferometer

被引:0
|
作者
Guo, Zhong-Kai [1 ,2 ]
Wang, Xiao-Yong [1 ]
机构
[1] China Acad Space Technol, Beijing Inst Space Mech & Elect, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
GENERAL RELATIVITY; RADIATION-PRESSURE; OSCILLATOR; NOISE;
D O I
10.1103/PhysRevD.109.124017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examined the output of a quantum Michelson interferometer incorporating the combined effects of nonlinear optomechanical interaction and time-varying gravitational fields. Our findings indicate a deviation from the standard relationship between the phase shift of the interferometer's output and the amplitude of gravitational waves. This deviation, a slight offset in direct proportionality, is associated with the gravitational wave memory effect under the conventional settings of interferometer parameters. Furthermore, the results suggest that consecutive gravitational wave memory, or the stochastic gravitational wave memory background (SGWMB), contributes not only to the classical red noise spectrum but also to a quantum red noise spectrum through this new mechanism. This leads to a novel quantum noise limit for interferometers, which may be crucial for higher precision detection system. Our analysis potentially offers a more accurate description of quantum interferometers responding to gravitational waves and applies to other scenarios involving time-varying gravitational fields. It also provides insights and experimental approaches for exploring how to unify the quantum effects of macroscopic objects and gravitation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A cryogenic silicon interferometer for gravitational-wave detection
    Adhikari, R. X.
    Arai, K.
    Brooks, A. F.
    Wipf, C.
    Aguiar, O.
    Altin, P.
    Barr, B.
    Barsotti, L.
    Bassiri, R.
    Bell, A.
    Billingsley, G.
    Birney, R.
    Blair, D.
    Bonilla, E.
    Briggs, J.
    Brown, D. D.
    Byer, R.
    Cao, H.
    Constancio, M.
    Cooper, S.
    Corbitt, T.
    Coyne, D.
    Cumming, A.
    Daw, E.
    deRosa, R.
    Eddolls, G.
    Eichholz, J.
    Evans, M.
    Fejer, M.
    Ferreira, E. C.
    Freise, A.
    Frolov, V. V.
    Gras, S.
    Green, A.
    Grote, H.
    Gustafson, E.
    Hall, E. D.
    Hammond, G.
    Harms, J.
    Harry, G.
    Haughian, K.
    Heinert, D.
    Heintze, M.
    Hellman, F.
    Hennig, J.
    Hennig, M.
    Hild, S.
    Hough, J.
    Johnson, W.
    Karnai, B.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (16)
  • [2] Interferometer techniques for gravitational-wave detection
    Bond, Charlotte
    Brown, Daniel
    Freise, Andreas
    Strain, Kenneth A.
    LIVING REVIEWS IN RELATIVITY, 2016, 19 : 1 - 221
  • [3] Interferometer Techniques for Gravitational-Wave Detection
    Freise, Andreas
    Strain, Kenneth
    LIVING REVIEWS IN RELATIVITY, 2010, 13
  • [4] Quantum limits of interferometer topologies for gravitational radiation detection
    Miao, Haixing
    Yang, Huan
    Adhikari, Rana X.
    Chen, Yanbei
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (16)
  • [5] Accurate calculation of gravitational wave memory
    Liu, Xiaolin
    He, Xiaokai
    Cao, Zhoujian
    PHYSICAL REVIEW D, 2021, 103 (04)
  • [6] Nonlinear optical effects in the LIGO gravitational-wave interferometer
    Willems, P
    TOPICAL PROBLEMS OF NONLINEAR WAVE PHYSICS, 2006, 5975
  • [7] Quantum metrology for gravitational wave astronomy
    Schnabel, Roman
    Mavalvala, Nergis
    McClelland, David E.
    Lam, Ping K.
    NATURE COMMUNICATIONS, 2010, 1
  • [8] Quantum correlation measurements in interferometric gravitational-wave detectors
    Martynov, D. V.
    Frolov, V. V.
    Kandhasamy, S.
    Izumi, K.
    Miao, H.
    Mavalvala, N.
    Hall, E. D.
    Lanza, R.
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Adams, C.
    Adhikari, R. X.
    Anderson, S. B.
    Ananyeva, A.
    Appert, S.
    Arai, K.
    Aston, S. M.
    Ballmer, S. W.
    Barker, D.
    Barr, B.
    Barsotti, L.
    Bartlett, J.
    Bartos, I.
    Batch, J. C.
    Bell, A. S.
    Betzwieser, J.
    Billingsley, G.
    Birch, J.
    Biscans, S.
    Biwer, C.
    Blair, C. D.
    Bork, R.
    Brooks, A. F.
    Ciani, G.
    Clara, F.
    Countryman, S. T.
    Cowart, M. J.
    Coyne, D. C.
    Cumming, A.
    Cunningham, L.
    Danzmann, K.
    Costa, C. F. Da Silva
    Daw, E. J.
    Debra, D.
    DeRosa, R. T.
    DeSalvo, R.
    Dooley, K. L.
    Doravari, S.
    Driggers, J. C.
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [9] Advanced quantum techniques for future gravitational-wave detectors
    Danilishin, Stefan L.
    Khalili, Farid Ya.
    Miao, Haixing
    LIVING REVIEWS IN RELATIVITY, 2019, 22 (1)
  • [10] Examination of a simple example of gravitational wave memory
    Tolish, Alexander
    Bieri, Lydia
    Garfinkle, David
    Wald, Robert M.
    PHYSICAL REVIEW D, 2014, 90 (04):