Low-Temperature TiO2 Electron Transporting Layer for Planar Hole Transport Material-Free Carbon Electrode-CsFA-Based Perovskite Solar Cells

被引:1
作者
Passatorntaschakorn, Woraprom [1 ]
Khampa, Warunee [2 ]
Musikpan, Wongsathon [2 ]
Ngamjarurojana, Athipong [1 ]
Gardchareon, Atcharawon [1 ]
Ruankham, Pipat [1 ,3 ,4 ]
Bhoomanee, Chawalit [1 ]
Wongratanaphisan, Duangmanee [1 ,3 ,4 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Phys & Mat Sci, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Mat Sci Res Ctr, Fac Sci, Chiang Mai 50200, Thailand
[3] Minist Higher Educ Sci Res & Innovat, Thailand Ctr Excellence Phys ThEP Ctr, Bangkok 10400, Thailand
[4] Chiang Mai Univ, Res Unit Dev & Utilizat Electron Linear Accelerato, Chiang Mai 50200, Thailand
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2024年
关键词
carbon electrodes; hole transpot material free; low-temperature processes; perovskite solar cells; TiO2; nanoparticles; EFFICIENT; STABILITY;
D O I
10.1002/pssa.202400470
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon electrode-based perovskite solar cells (C-PSCs) without a hole transport material (HTM) are cost-effective and exhibit impressive long-term stability. The electron transporting layer (ETL) plays a crucial role in planar CsFA-based HTM-free C-PSCs, serving as both an electron transporter and a hole barrier. Herein, the role of low-TiO2 morphology and thickness on the performance of CsFA-based HTM-free C-PSCs are addressed. Herein, the devices are fabricated with a simple structure fluorine-doped tin oxide /TiO2 nanoparticles (TiO2 NPs)/Cs(0.17)FA(0.83)Pb(I0.83Br0.17)(3)/carbon, using low-temperature processes (<= 150 degrees C) under ambient air conditions. By optimizing TiO2 NP layer thickness via spin-coating speed adjustments, the ETL's coverage and compactness are improved, enhancing the perovskite film's quality, crystallinity, and grain size. An optimal TiO2 ETL at 1500 rpm yields 10.80% efficiency and demonstrates exceptional stability, maintaining 80% efficiency over 120 days in an air environment without encapsulation. The enhancement in device performance is attributed to improved surface properties of the TiO2 NPs ETL, effectively reducing interfacial charge recombination. This straightforwardly supports the development of sustainable, commercial-ready CsFA HTM-free C-PSCs.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Enhancing efficiency of planar structure perovskite solar cells using Sn-doped TiO2 as electron transport layer at low temperature
    Cai, Qingbin
    Zhang, Yiqiang
    Liang, Chao
    Li, Pengwei
    Gu, Hao
    Liu, Xiaotao
    Wang, Jiefei
    Shentu, Zhexian
    Fan, Jiajie
    Shao, Guosheng
    ELECTROCHIMICA ACTA, 2018, 261 : 227 - 235
  • [42] Low-temperature processed ultrathin TiO2 for efficient planar heterojunction perovskite solar cells
    Huang, Xiaokun
    Hu, Ziyang
    Xu, Jie
    Wang, Peng
    Zhang, Jing
    Zhu, Yuejin
    ELECTROCHIMICA ACTA, 2017, 231 : 77 - 84
  • [43] Low-temperature electrodeposited crystalline SnO2 as an efficient electron transporting layer for conventional perovskite solar cells
    Chen, Jung-Yao
    Chueh, Chu-Chen
    Zhu, Zonglong
    Chen, Wen-Chang
    Jen, Alex K. -Y.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 164 : 47 - 55
  • [44] Low-temperature preparation of HTM-free SnO2-based planar heterojunction perovskite solar cells with commercial carbon as counter electrode
    Qiang, Yue
    Cheng, Jian
    Qi, Ying
    Shi, Haokun
    Liu, Haichao
    Geng, Cong
    Xie, Yahong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 809
  • [45] Thermally Stable Mesoporous Perovskite Solar Cells Incorporating Low-Temperature Processed Graphene/Polymer Electron Transporting Layer
    Tong, Shi Wun
    Balapanuru, Janardhan
    Fu, Deyi
    Loh, Kian Ping
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (43) : 29496 - 29503
  • [46] Fabrication parameters of low-temperature ZnO-based hole-transport-free perovskite solar cells
    Hatamvand, Mohammad
    Mirjalili, Seyed Abbas
    Sharzehee, Maryam
    Behjat, Abbas
    Jabbari, Mostafa
    Skrifvars, Mikael
    OPTIK, 2017, 140 : 443 - 450
  • [47] Fabrication and TCAD simulation of TiO2 nanorods electron transport layer based perovskite solar cells
    Jarwal, Deepak Kumar
    Mishra, Ashwini Kumar
    Kumar, Amit
    Ratan, Smrity
    Singh, Abhinav Pratap
    Kumar, Chandan
    Mukherjee, Bratindranath
    Jit, Satyabrata
    SUPERLATTICES AND MICROSTRUCTURES, 2020, 140 (140)
  • [48] Improved Interfacial Contact Between "Perovskite/Electron-Transport Layer" by Hydrophilic Molecule to Achieve Efficiency &gt;14%, Carbon Electrode-Based, Hole-Conductor-Free, Low-Temperature Mesoscopic Perovskite Solar Cells
    Guo, De'en
    Yu, Xiaohan
    Fang, Zhenxing
    Peng, Heng
    Xie, Haipeng
    Huang, Han
    Kong, Deming
    Zhou, Conghua
    SOLAR RRL, 2024, 8 (07)
  • [49] Low-temperature crosslinked hole transport material for high-performance inverted perovskite solar cells
    He, Dingqian
    Zhao, Peng
    Feng, Yaqing
    Zhang, Bao
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [50] Device Simulation of Low Cost HTM Free Perovskite Solar Cell Based on TiO2 Electron Transport Layer
    Rai, Shambhavi
    Pandey, B. K.
    Dwivedi, D. K.
    3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER & APPLIED PHYSICS (ICC-2019), 2020, 2220