Low-Temperature TiO2 Electron Transporting Layer for Planar Hole Transport Material-Free Carbon Electrode-CsFA-Based Perovskite Solar Cells

被引:1
|
作者
Passatorntaschakorn, Woraprom [1 ]
Khampa, Warunee [2 ]
Musikpan, Wongsathon [2 ]
Ngamjarurojana, Athipong [1 ]
Gardchareon, Atcharawon [1 ]
Ruankham, Pipat [1 ,3 ,4 ]
Bhoomanee, Chawalit [1 ]
Wongratanaphisan, Duangmanee [1 ,3 ,4 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Phys & Mat Sci, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Mat Sci Res Ctr, Fac Sci, Chiang Mai 50200, Thailand
[3] Minist Higher Educ Sci Res & Innovat, Thailand Ctr Excellence Phys ThEP Ctr, Bangkok 10400, Thailand
[4] Chiang Mai Univ, Res Unit Dev & Utilizat Electron Linear Accelerato, Chiang Mai 50200, Thailand
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2024年
关键词
carbon electrodes; hole transpot material free; low-temperature processes; perovskite solar cells; TiO2; nanoparticles; EFFICIENT; STABILITY;
D O I
10.1002/pssa.202400470
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon electrode-based perovskite solar cells (C-PSCs) without a hole transport material (HTM) are cost-effective and exhibit impressive long-term stability. The electron transporting layer (ETL) plays a crucial role in planar CsFA-based HTM-free C-PSCs, serving as both an electron transporter and a hole barrier. Herein, the role of low-TiO2 morphology and thickness on the performance of CsFA-based HTM-free C-PSCs are addressed. Herein, the devices are fabricated with a simple structure fluorine-doped tin oxide /TiO2 nanoparticles (TiO2 NPs)/Cs(0.17)FA(0.83)Pb(I0.83Br0.17)(3)/carbon, using low-temperature processes (<= 150 degrees C) under ambient air conditions. By optimizing TiO2 NP layer thickness via spin-coating speed adjustments, the ETL's coverage and compactness are improved, enhancing the perovskite film's quality, crystallinity, and grain size. An optimal TiO2 ETL at 1500 rpm yields 10.80% efficiency and demonstrates exceptional stability, maintaining 80% efficiency over 120 days in an air environment without encapsulation. The enhancement in device performance is attributed to improved surface properties of the TiO2 NPs ETL, effectively reducing interfacial charge recombination. This straightforwardly supports the development of sustainable, commercial-ready CsFA HTM-free C-PSCs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Enhanced performance of planar perovskite solar cells using dip-coated TiO2 as electron transporting layer
    El Haimeur, A.
    Makha, M.
    Bakkali, H.
    Gonzalez-Leal, J. M.
    Blanco, E.
    Dominguez, M.
    Voitenko, Z. V.
    SOLAR ENERGY, 2020, 195 : 475 - 482
  • [22] Effects of TiCl4 post-treatment on the performance of hole transport material-free, screen printable mesoscopic perovskite solar cells with carbon electrode
    Kim, Byol
    So, Chol Il
    Ko, Song Guk
    Ri, Jin Hyok
    Ryu, Gwon Il
    Sonu, Gyong Su
    THIN SOLID FILMS, 2019, 692
  • [23] Low Temperature VOx Hole Transport Layer for Enhancing the Performance of Carbon-Based Perovskite Solar Cells
    Hu, Ruiyuan
    Li, Yang
    Que, Zhongbao
    Zhai, Shuaibo
    Feng, Yifei
    Chu, Liang
    Li, Xing'ao
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (02) : 273 - 280
  • [24] Enhanced performance of planar perovskite solar cells based on low temperature processed TiO2 electron transport layer modified by Li2SiO3
    Zhang, Zongbao
    Xie, Lai
    Lin, Ruikun
    Qin, Qiqi
    Cai, Yangyang
    Zhou, Yang
    Liu, Hui
    Lu, Xubing
    Gao, Xingsen
    Shui, Lingling
    Wu, Sujuan
    Liu, Jun-Ming
    JOURNAL OF POWER SOURCES, 2018, 392 : 1 - 7
  • [25] Enhanced energy level alignment and hole extraction of carbon electrode for air-stable hole-transporting material-free CsPbBr3 perovskite solar cells
    Bu, Fan
    He, Benlin
    Ding, Yang
    Li, Xueke
    Sun, Xuemiao
    Duan, Jialong
    Zhao, Yuanyuan
    Chen, Haiyan
    Tang, Qunwei
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 205
  • [26] Low-Temperature Processed TiOxElectron Transport Layer for Efficient Planar Perovskite Solar Cells
    Shahiduzzaman, Md.
    Kuwahara, Daiki
    Nakano, Masahiro
    Karakawa, Makoto
    Takahashi, Kohshin
    Nunzi, Jean-Michel
    Taima, Tetsuya
    NANOMATERIALS, 2020, 10 (09) : 1 - 12
  • [27] Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO2 as an Electron Transport Layer in Planar Perovskite Solar Cells
    Kuang, Yinghuan
    Zardetto, Valerio
    van Gils, Roderick
    Karwal, Saurabh
    Koushik, Dibyashree
    Verheijen, Marcel A.
    Black, Lachlan E.
    Weijtens, Christ
    Veenstra, Sjoerd
    Andriessen, Ronn
    Kessels, Wilhelmus M. M.
    Creatore, Mariadriana
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (36) : 30367 - 30378
  • [28] Room-Temperature-Processed Fullerene/TiO2 Nanocomposite Electron Transporting Layer for High-Efficiency Rigid and Flexible Planar Perovskite Solar Cells
    Wang, Ping-Cheng
    Govindan, Venkatesan
    Chiang, Chien-Hung
    Wu, Chun-Guey
    SOLAR RRL, 2020, 4 (10):
  • [29] Influence of bi-phasic TiO2 as a low-temperature curable electron transport layer for efficient perovskite solar cells
    Supraja, S.
    Dileep, K. Reshma
    Chundi, Narendra
    Ramasamy, Easwaramoorthi
    Shanmugasundaram, Sakthivel
    Veerappan, Ganapathy
    SOLAR ENERGY, 2022, 247 : 308 - 314
  • [30] Hydrothermally Treated TiO2Nanorods as Electron Transport Layer in Planar Perovskite Solar Cells
    Bhoomanee, Chawalit
    Sanglao, Jongrak
    Kumnorkaew, Pisist
    Wang, Tao
    Lohawet, Khathawut
    Ruankham, Pipat
    Gardchareon, Atcharawon
    Wongratanaphisan, Duangmanee
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (01):