Low-Temperature TiO2 Electron Transporting Layer for Planar Hole Transport Material-Free Carbon Electrode-CsFA-Based Perovskite Solar Cells

被引:1
|
作者
Passatorntaschakorn, Woraprom [1 ]
Khampa, Warunee [2 ]
Musikpan, Wongsathon [2 ]
Ngamjarurojana, Athipong [1 ]
Gardchareon, Atcharawon [1 ]
Ruankham, Pipat [1 ,3 ,4 ]
Bhoomanee, Chawalit [1 ]
Wongratanaphisan, Duangmanee [1 ,3 ,4 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Phys & Mat Sci, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Mat Sci Res Ctr, Fac Sci, Chiang Mai 50200, Thailand
[3] Minist Higher Educ Sci Res & Innovat, Thailand Ctr Excellence Phys ThEP Ctr, Bangkok 10400, Thailand
[4] Chiang Mai Univ, Res Unit Dev & Utilizat Electron Linear Accelerato, Chiang Mai 50200, Thailand
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2024年
关键词
carbon electrodes; hole transpot material free; low-temperature processes; perovskite solar cells; TiO2; nanoparticles; EFFICIENT; STABILITY;
D O I
10.1002/pssa.202400470
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon electrode-based perovskite solar cells (C-PSCs) without a hole transport material (HTM) are cost-effective and exhibit impressive long-term stability. The electron transporting layer (ETL) plays a crucial role in planar CsFA-based HTM-free C-PSCs, serving as both an electron transporter and a hole barrier. Herein, the role of low-TiO2 morphology and thickness on the performance of CsFA-based HTM-free C-PSCs are addressed. Herein, the devices are fabricated with a simple structure fluorine-doped tin oxide /TiO2 nanoparticles (TiO2 NPs)/Cs(0.17)FA(0.83)Pb(I0.83Br0.17)(3)/carbon, using low-temperature processes (<= 150 degrees C) under ambient air conditions. By optimizing TiO2 NP layer thickness via spin-coating speed adjustments, the ETL's coverage and compactness are improved, enhancing the perovskite film's quality, crystallinity, and grain size. An optimal TiO2 ETL at 1500 rpm yields 10.80% efficiency and demonstrates exceptional stability, maintaining 80% efficiency over 120 days in an air environment without encapsulation. The enhancement in device performance is attributed to improved surface properties of the TiO2 NPs ETL, effectively reducing interfacial charge recombination. This straightforwardly supports the development of sustainable, commercial-ready CsFA HTM-free C-PSCs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Low-temperature fabrication of perovskite solar cells using modified TiO2 electron transport layer
    Liu, Baixin
    Sun, Guangshuai
    Sun, Qian
    Lv, Yuzhen
    Huang, Meng
    Qi, Bo
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 138
  • [2] Improved Performance of Hole-Transporting Material-Free Perovskite Solar Cells Using a Low-Temperature Printed Carbon Paste
    Tountas, Marinos
    Polyzoidis, Christos
    Loizos, Michalis
    Rogdakis, Konstantinos
    Kymakis, Emmanuel
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (11) : 6228 - 6235
  • [3] Sustainable Planar Hole-Transporting Material-Free Carbon Electrode-Based Perovskite Solar Cells: Stability Beyond Two Years
    Passatorntaschakorn, Woraprom
    Khampa, Warunee
    Musikpan, Wongsathon
    Ngamjarurojana, Athipong
    Gardchareon, Atcharawon
    Kanjanaboos, Pongsakorn
    Kaewprajak, Anusit
    Kumnorkaew, Pisist
    Ruankham, Pipat
    Wongratanaphisan, Duangmanee
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (16): : 6972 - 6985
  • [4] A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells
    Li, Nan
    Yan, Jin
    Ai, Yuqian
    Jiang, Ershuai
    Lin, Liujin
    Shou, Chunhui
    Yan, Baojie
    Sheng, Jiang
    Ye, Jichun
    SCIENCE CHINA-MATERIALS, 2020, 63 (02) : 207 - 215
  • [5] Low-Temperature Microwave Processed TiO2 as an Electron Transport Layer for Enhanced Performance and Atmospheric Stability in Planar Perovskite Solar Cells
    Ranjan, Sudhir
    Ranjan, Rahul
    Tyagi, Ankit
    Rana, Kewal Singh
    Soni, Ajay
    Kodali, Hari Krishna
    Dalal, Vikram
    Singh, Anand
    Garg, Ashish
    Nalwa, Kanwar Singh
    Gupta, Raju Kumar
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (03) : 2679 - 2696
  • [6] Hole-transport material-free perovskite-based solar cells
    Etgar, Lioz
    MRS BULLETIN, 2015, 40 (08) : 674 - 680
  • [7] Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier
    Chen, Dazheng
    Su, Aixue
    Li, Xueyi
    Pang, Shangzheng
    Zhu, Weidong
    Xi, He
    Chang, Jingjing
    Zhang, Jincheng
    Zhang, Chunfu
    Hao, Yue
    SOLAR ENERGY, 2019, 188 : 239 - 246
  • [8] All low-temperature processed carbon-based planar heterojunction perovskite solar cells employing Mg-doped rutile TiO2 as electron transport layer
    Liu, Xingyue
    Liu, Zhiyong
    Sun, Bo
    Tan, Xianhua
    Ye, Haibo
    Tu, Yuxue
    Shi, Tielin
    Tang, Zirong
    Liao, Guanglan
    ELECTROCHIMICA ACTA, 2018, 283 : 1115 - 1124
  • [9] Low-Temperature Thermally Evaporated SnO2 Based Electron Transporting Layer for Perovskite Solar Cells with Annealing Process
    Kim, Ma Ro
    Choi, Hyung Wook
    Bark, Chung Wung
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (09) : 5491 - 5497
  • [10] Effects of Adding PbI2 on the Performance of Hole-Transport Material-Free Mesoscopic Perovskite Solar Cells with Carbon Electrode
    Kim, Byol
    Ko, Song Guk
    Sonu, Kyong Su
    Ri, Jin Hyok
    Kim, Un Chol
    Ryu, Gwon Il
    JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (10) : 6266 - 6271