Physiological and biochemical responses of arbuscular mycorrhizal fungi in symbiosis with Juglans nigra L. seedlings to alleviate salt stress

被引:2
|
作者
Li, Ao [1 ,2 ]
Wu, Chengxu [1 ,2 ]
Zheng, Xu [1 ,2 ]
Nie, Ruining [1 ,2 ]
Tang, Jiali [1 ,2 ]
Ji, Xinying [1 ,2 ]
Zhang, Junpei [1 ,2 ]
机构
[1] Chinese Acad Forestry, Res Inst Forestry, State Key Lab Tree Genet & Breeding, Key Lab Tree Breeding & Cultivat State Forestry, Beijing 100091, Peoples R China
[2] Chinese Acad Forestry, Res Inst Forestry, Grassland Adm, Beijing 100091, Peoples R China
来源
RHIZOSPHERE | 2024年 / 31卷
关键词
Juglans nigra L; Salt stress; Arbuscular mycorrhiza; Photosynthesis; Hormone metabolism; SENSITIVE METHOD; ABIOTIC STRESS; PEROXIDASE; TOLERANCE; GROWTH; ROOTS;
D O I
10.1016/j.rhisph.2024.100928
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Salt stress is a significant challenge for agricultural and forestry production, which severely limits crop growth and yield. Arbuscular mycorrhizal fungi (AMF) act as natural bioregulators and have demonstrated notable efficacy in mitigating the impacts of salt stress within agricultural and forestry ecosystems. Accordingly, this study investigated the effects of inoculating black walnut seedlings with two species of AMF, Funneliformis mosseae and Rhizophagus irregularis, under varying levels of salt stress (0, 100, 200, and 300 mM NaCl). The growth performance, physiological, and biochemical responses of the seedlings were assessed. The results confirmed the severe effects of salt stress on the growth and physiology of black walnut seedlings. The seedlings inoculated with AMF exhibited superior performance in many aspects. Firstly, both species of AMF significantly increased the proline (Pro) content in the leaves and roots of the seedlings and significantly reduced the hydrogen peroxide (H2O2) content in the leaves. However, their impact on the activity of antioxidant enzymes and the content of malondialdehyde (MDA) in the leaves and roots was not significantly pronounced. Secondly, AMF-treated seedlings demonstrated enhanced photosynthetic performance, including a significant improvement in photosynthetic parameters (Gs, Tr, and Pn), and also elevated the efficiency of photosynthesis and energy utilization rate. Notably, F. mosseae also significantly increased the chlorophyll content and stomatal dimensions under low salt concentrations (0 and 100 mM NaCl). Furthermore, AMF inoculation promoted the accumulation of growthrelated endogenous hormones (IAA, ABA, GA3, ZR), further supporting plant development. Principal component analysis concluded that AMF primarily enhance the tolerance of black walnut to salt stress by improving photosynthetic performance and regulating the levels of endogenous hormones. F. mosseae, in particular, may be more suited to enhancing the adaptability and survival of black walnut under salt stress conditions. Overall, our study underscores the significant role of AMF in enhancing the salt tolerance of crops in saline soils and promoting sustainable agricultural development.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance
    Navarro, Josefa M.
    Perez-Tornero, Olaya
    Morte, Asuncion
    JOURNAL OF PLANT PHYSIOLOGY, 2014, 171 (01) : 76 - 85
  • [42] Insights into physiological and biochemical responses of Zea mays L. under salinity stress
    Aizaz, Muhammad
    Ullah, Raza
    Ullah, Tariq
    Sami, Rokayya
    Aljabri, Maha
    Althaqafi, Mohammed M.
    AL-Farga, Ammar
    Qari, Sameer H.
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2024, 36 : 1 - 13
  • [43] Evaluation of Arbuscular Mycorrhizal Fungi Capacity to Alleviate Abiotic Stress of Olive (Olea europaea L.) Plants at Different Transplant Conditions
    Josefina Bompadre, Maria
    Pergola, Mariana
    Fernandez Bidondo, Laura
    Paula Colombo, Roxana
    Analia Silvani, Vanesa
    Guillermo Pardo, Alejandro
    Antonio Ocampo, Juan
    Margarita Godeas, Alicia
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [44] Mitigating gadolinium toxicity in guar (Cyamopsis tetragonoloba L.) through the symbiotic associations with arbuscular mycorrhizal fungi: physiological and biochemical insights
    Abdelgawad, Hamada
    Crecchio, Carmine
    Nhs, Mousa
    Abdel-Maksoud, Mostafa A.
    Malik, Abdul
    Sheteiwy, Mohamed S.
    Hamoud, Yousef Alhaj
    Sulieman, Saad
    Shaghaleh, Hiba
    Alyafei, Mohammed
    Khanghahi, Mohammad Yaghoubi
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [45] Responses of morphological, physiological, and biochemical characteristics of maize (Zea mays L.) seedlings to atrazine stress
    Bibi, Shagufta
    Khan, Sarzamin
    Taimur, Nadia
    Daud, Muhammad K.
    Azizullah, Azizullah
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2019, 191 (12)
  • [46] Morphological, physiological and biochemical responses to drought stress of Stone pine (Pinus pinea L.) seedlings
    Deligoz, Ayse
    Gur, Merve
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (11)
  • [47] Alleviation of Detrimental Effects of Salt Stress on Date Palm (Phoenix dactylifera L.) by the Application of Arbuscular Mycorrhizal Fungi and/or Compost
    Ait-El-Mokhtar, Mohamed
    Baslam, Marouane
    Ben-Laouane, Raja
    Anli, Mohamed
    Boutasknit, Abderrahim
    Mitsui, Toshiaki
    Wahbi, Said
    Meddich, Abdelilah
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2020, 4
  • [48] Physiological and Biochemical Responses of Acacia Seyal (Del.) Seedlings under Salt Stress Conditions
    Fall, Dioumacor
    Diouf, Diegane
    Neyra, Marc
    Diouf, Omar
    Diallo, Nicolas
    JOURNAL OF PLANT NUTRITION, 2009, 32 (07) : 1122 - 1136
  • [49] Growth and physiological responses of melon plants inoculated with mycorrhizal fungi under salt stress
    Lucio, Wilber da Silveira
    de Lacerda, Claudivan Feitosa
    Mendes Filho, Paulo Furtado
    Ferreyra Hernandez, Fernando Felipe
    Rocha Neves, Antonia Leila
    Gomes-Filho, Eneas
    SEMINA-CIENCIAS AGRARIAS, 2013, 34 (04): : 1587 - 1602
  • [50] Induction of salt stress tolerance in cowpea [Vigna unguiculata (L.) Walp.] by arbuscular mycorrhizal fungi
    Abeer, Hashem
    AbdAllah, E. F.
    Alqarawi, A. A.
    Egamberdieva, Dilfuza
    LEGUME RESEARCH, 2015, 38 (05) : 579 - 588