Physiological and biochemical responses of arbuscular mycorrhizal fungi in symbiosis with Juglans nigra L. seedlings to alleviate salt stress

被引:2
|
作者
Li, Ao [1 ,2 ]
Wu, Chengxu [1 ,2 ]
Zheng, Xu [1 ,2 ]
Nie, Ruining [1 ,2 ]
Tang, Jiali [1 ,2 ]
Ji, Xinying [1 ,2 ]
Zhang, Junpei [1 ,2 ]
机构
[1] Chinese Acad Forestry, Res Inst Forestry, State Key Lab Tree Genet & Breeding, Key Lab Tree Breeding & Cultivat State Forestry, Beijing 100091, Peoples R China
[2] Chinese Acad Forestry, Res Inst Forestry, Grassland Adm, Beijing 100091, Peoples R China
来源
RHIZOSPHERE | 2024年 / 31卷
关键词
Juglans nigra L; Salt stress; Arbuscular mycorrhiza; Photosynthesis; Hormone metabolism; SENSITIVE METHOD; ABIOTIC STRESS; PEROXIDASE; TOLERANCE; GROWTH; ROOTS;
D O I
10.1016/j.rhisph.2024.100928
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Salt stress is a significant challenge for agricultural and forestry production, which severely limits crop growth and yield. Arbuscular mycorrhizal fungi (AMF) act as natural bioregulators and have demonstrated notable efficacy in mitigating the impacts of salt stress within agricultural and forestry ecosystems. Accordingly, this study investigated the effects of inoculating black walnut seedlings with two species of AMF, Funneliformis mosseae and Rhizophagus irregularis, under varying levels of salt stress (0, 100, 200, and 300 mM NaCl). The growth performance, physiological, and biochemical responses of the seedlings were assessed. The results confirmed the severe effects of salt stress on the growth and physiology of black walnut seedlings. The seedlings inoculated with AMF exhibited superior performance in many aspects. Firstly, both species of AMF significantly increased the proline (Pro) content in the leaves and roots of the seedlings and significantly reduced the hydrogen peroxide (H2O2) content in the leaves. However, their impact on the activity of antioxidant enzymes and the content of malondialdehyde (MDA) in the leaves and roots was not significantly pronounced. Secondly, AMF-treated seedlings demonstrated enhanced photosynthetic performance, including a significant improvement in photosynthetic parameters (Gs, Tr, and Pn), and also elevated the efficiency of photosynthesis and energy utilization rate. Notably, F. mosseae also significantly increased the chlorophyll content and stomatal dimensions under low salt concentrations (0 and 100 mM NaCl). Furthermore, AMF inoculation promoted the accumulation of growthrelated endogenous hormones (IAA, ABA, GA3, ZR), further supporting plant development. Principal component analysis concluded that AMF primarily enhance the tolerance of black walnut to salt stress by improving photosynthetic performance and regulating the levels of endogenous hormones. F. mosseae, in particular, may be more suited to enhancing the adaptability and survival of black walnut under salt stress conditions. Overall, our study underscores the significant role of AMF in enhancing the salt tolerance of crops in saline soils and promoting sustainable agricultural development.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Arbuscular Mycorrhizal Fungi Alleviate Salt Stress Damage by Coordinating Nitrogen Utilization in Leaves of Different Species
    Ma, Shilin
    Yue, Jianmin
    Wang, Jinping
    Jia, Zhaohui
    Li, Chong
    Zeng, Jingyi
    Liu, Xin
    Zhang, Jinchi
    FORESTS, 2022, 13 (10):
  • [22] The differential behavior of arbuscular mycorrhizal fungi in interaction with Astragalus sinicus L. under salt stress
    Peng, Jin
    Li, Yan
    Shi, Ping
    Chen, Xiuhua
    Lin, Hui
    Zhao, Bin
    MYCORRHIZA, 2011, 21 (01) : 27 - 33
  • [23] Arbuscular mycorrhizal symbiosis regulates hormone and osmotic equilibrium of Lycium barbarum L. under salt stress
    Liu, H. G.
    Wang, Y. J.
    Hart, M.
    Chen, H.
    Tang, M.
    MYCOSPHERE, 2016, 7 (06) : 828 - 843
  • [24] Proteomics Analysis of E. angustifolia Seedlings Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress
    Jia, Tingting
    Wang, Jian
    Chang, Wei
    Fan, Xiaoxu
    Sui, Xin
    Song, Fuqiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (03)
  • [25] The Effect of Arbuscular Mycorrhizal Fungi Inoculation in Mitigating Salt Stress of Pea (Pisum Sativum L.)
    Parihar, Manoj
    Rakshit, Amitava
    Rana, Kiran
    Tiwari, Gopal
    Jatav, Surendra Singh
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2020, 51 (11) : 1545 - 1559
  • [26] Adoption of arbuscular mycorrhizal fungi and biochar for alleviating the agro-physiological response of lavander ( Lavandula angustifolia L.) subjected to drought stress
    Haghaninia, Mohammad
    Javanmard, Abdollah
    Radicetti, Emanuele
    Rasouli, Farzad
    Ruiz-Lozano, Juan Manuel
    Sabbatini, Paolo
    PLANT STRESS, 2024, 12
  • [27] Arbuscular Mycorrhizal Fungi Enhance Tolerance to Drought Stress by Altering the Physiological and Biochemical Characteristics of Sugar Beet
    Cui, Zeyuan
    Chen, Rui
    Li, Tai
    Zou, Bingchen
    Geng, Gui
    Xu, Yao
    Stevanato, Piergiorgio
    Yu, Lihua
    Nurminsky, Vadim N.
    Liu, Jiahui
    Wang, Yuguang
    SUGAR TECH, 2024, 26 (05) : 1377 - 1392
  • [28] Physiological Response of Citrus macrophylla Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress
    Navarro, Josefa M.
    Morte, Asuncion
    Rodriguez-Moran, Manuel
    Perez-Tornero, Olaya
    XII INTERNATIONAL CITRUS CONGRESS - INTERNATIONAL SOCIETY OF CITRICULTURE, 2015, 1065 : 1351 - 1358
  • [29] Morphological and physiological responses of Coccoloba uvifera (L.) L. seedlings of different origin to salt stress
    Bullain-Galardis, Mijail
    Campos-Posada, Raul
    Campos-Posada, Gloria
    Eichler-Loebermann, Bettina
    Pruneau, Ludovic
    Ba, Amadou
    Lopez-Sanchez, Raul
    TERRA LATINOAMERICANA, 2023, 41
  • [30] Alleviation of Salt Stress in Cynara cardunculus L. var. scolymus Fiori by Arbuscular Mycorrhizal Fungi
    Ruta, C.
    Tagarelli, A.
    Morone-Fortunato, I.
    VII INTERNATIONAL SYMPOSIUM ON ARTICHOKE, CARDOON AND THEIR WILD RELATIVES, 2012, 942 : 315 - 318