Limiting Spectral Radii for Products of Ginibre Matrices and Their Inverses

被引:0
|
作者
Ma, Xiansi [1 ]
Qi, Yongcheng [1 ]
机构
[1] Univ Minnesota Duluth, Dept Math & Stat, Duluth, MN 55812 USA
关键词
Product matrix; Eigenvalue; Spectral radius; Ginibre matrix; DISTRIBUTIONS; EIGENVALUES; ENSEMBLES;
D O I
10.1007/s10959-024-01341-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the product of m independent n-by-n Ginibre matrices and their inverses, where m=p+q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=p+q$$\end{document}, p is the number of Ginibre matrices, and q is the number of inverses of Ginibre matrices. The maximum absolute value of the eigenvalues of the product matrices is known as the spectral radius. In this paper, we explore the limiting spectral radii of the product matrices as n tends to infinity and m varies with n. Specifically, when q >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 1$$\end{document} is a fixed integer, we demonstrate that the limiting spectral radii display a transition phenomenon when the limit of p/n changes from zero to infinity. When q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=0$$\end{document}, the limiting spectral radii for Ginibre matrices have been obtained by Jiang and Qi [J Theor Probab 30: 326-364, 2017]. When q diverges to infinity as n approaches infinity, we prove that the logarithmic spectral radii exhibit a normal limit, which reduces to the limiting distribution for spectral radii for the spherical ensemble obtained by Chang et al. [J Math Anal Appl 461: 1165-1176, 2018] when p=q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=q$$\end{document}.
引用
收藏
页码:3756 / 3780
页数:25
相关论文
共 50 条
  • [41] Sharp Bounds for the Spectral Radii of Nonnegative Tensors
    Lu, Chuang
    You, Lihua
    Huang, Yufei
    FRONTIERS OF MATHEMATICS, 2023, 18 (04): : 883 - 901
  • [42] Ordering Graphs with Cut Edges by Their Spectral Radii
    Kun-fu FANG Faculty of Science
    Acta Mathematicae Applicatae Sinica, 2012, (01) : 193 - 200
  • [43] Ordering graphs with cut edges by their spectral radii
    Fang, Kun-fu
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (01): : 193 - 200
  • [44] Ordering graphs with cut edges by their spectral radii
    Kun-fu Fang
    Acta Mathematicae Applicatae Sinica, English Series, 2012, 28 : 193 - 200
  • [45] On limiting spectral distribution of large sample covariance matrices by VARMA(p,q)
    Wang, Cheng
    Jin, Baisuo
    Miao, Baiqi
    JOURNAL OF TIME SERIES ANALYSIS, 2011, 32 (05) : 539 - 546
  • [46] Spectral relations between products and powers of isotropic random matrices
    Burda, Z.
    Nowak, M. A.
    Swiech, A.
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [47] Some spectral norm inequalities on Hadamard products of nonnegative matrices
    Zhang, Yun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 556 : 162 - 170
  • [48] SPECTRAL PROPERTIES OF CERTAIN SEQUENCES OF PRODUCTS OF TWO REAL MATRICES
    Brundu, Michela
    Zennaro, Marino
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 377 - 403
  • [49] Explicit eigenvalues and inverses of several Toeplitz matrices
    Yueh, Wen-Chyuan
    Cheng, Sui Sun
    ANZIAM JOURNAL, 2006, 48 : 73 - 97
  • [50] On the Laplacian spectral radii of trees
    Yuan, Xi-Ying
    Shan, Hai-Ying
    Liu, Yue
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4241 - 4246