Limiting Spectral Radii for Products of Ginibre Matrices and Their Inverses

被引:0
|
作者
Ma, Xiansi [1 ]
Qi, Yongcheng [1 ]
机构
[1] Univ Minnesota Duluth, Dept Math & Stat, Duluth, MN 55812 USA
关键词
Product matrix; Eigenvalue; Spectral radius; Ginibre matrix; DISTRIBUTIONS; EIGENVALUES; ENSEMBLES;
D O I
10.1007/s10959-024-01341-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the product of m independent n-by-n Ginibre matrices and their inverses, where m=p+q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=p+q$$\end{document}, p is the number of Ginibre matrices, and q is the number of inverses of Ginibre matrices. The maximum absolute value of the eigenvalues of the product matrices is known as the spectral radius. In this paper, we explore the limiting spectral radii of the product matrices as n tends to infinity and m varies with n. Specifically, when q >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 1$$\end{document} is a fixed integer, we demonstrate that the limiting spectral radii display a transition phenomenon when the limit of p/n changes from zero to infinity. When q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=0$$\end{document}, the limiting spectral radii for Ginibre matrices have been obtained by Jiang and Qi [J Theor Probab 30: 326-364, 2017]. When q diverges to infinity as n approaches infinity, we prove that the logarithmic spectral radii exhibit a normal limit, which reduces to the limiting distribution for spectral radii for the spherical ensemble obtained by Chang et al. [J Math Anal Appl 461: 1165-1176, 2018] when p=q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=q$$\end{document}.
引用
收藏
页码:3756 / 3780
页数:25
相关论文
共 50 条
  • [31] The Spectral Radii of Intersecting Uniform Hypergraphs
    Zhang, Peng-Li
    Zhang, Xiao-Dong
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (02) : 243 - 256
  • [32] Uniform supertrees with extremal spectral radii
    Wang, Wen-Huan
    Yuan, Ling
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (06) : 1211 - 1229
  • [33] The Aα-Spectral Radii of Graphs with Given Connectivity
    Wang, Chunxiang
    Wang, Shaohui
    MATHEMATICS, 2019, 7 (01):
  • [34] EXTREMAL SPECTRAL RADII OF UNIFORM SUPERTREES
    Yu, Guanglong
    Sun, Lin
    Pan, Lijun
    Zhang, Hailiang
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2024, 40 : 667 - 681
  • [35] On the limiting spectral distribution of the covariance matrices of time-lagged processes
    Robert, Christian Y.
    Rosenbaum, Mathieu
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (10) : 2434 - 2451
  • [36] A graphon approach to limiting spectral distributions of Wigner-type matrices
    Zhu, Yizhe
    RANDOM STRUCTURES & ALGORITHMS, 2020, 56 (01) : 251 - 279
  • [37] A result on the limiting spectral distribution of random matrices with unequal variance entries
    Jin, Shaojia
    Xie, Junshan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [38] The Ginibre Ensemble of Real Random Matrices and its Scaling Limits
    Borodin, A.
    Sinclair, C. D.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (01) : 177 - 224
  • [39] ON THE Aσ-SPECTRAL RADII OF GRAPHS WITH SOME GIVEN PARAMETERS
    Li, Shuchao
    Zhou, Zihan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (03) : 949 - 966
  • [40] Spectral radii of two kinds of uniform hypergraphs
    Kang, Liying
    Liu, Lele
    Qi, Liqun
    Yuan, Xiying
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 661 - 668