Limiting Spectral Radii for Products of Ginibre Matrices and Their Inverses

被引:0
|
作者
Ma, Xiansi [1 ]
Qi, Yongcheng [1 ]
机构
[1] Univ Minnesota Duluth, Dept Math & Stat, Duluth, MN 55812 USA
关键词
Product matrix; Eigenvalue; Spectral radius; Ginibre matrix; DISTRIBUTIONS; EIGENVALUES; ENSEMBLES;
D O I
10.1007/s10959-024-01341-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the product of m independent n-by-n Ginibre matrices and their inverses, where m=p+q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=p+q$$\end{document}, p is the number of Ginibre matrices, and q is the number of inverses of Ginibre matrices. The maximum absolute value of the eigenvalues of the product matrices is known as the spectral radius. In this paper, we explore the limiting spectral radii of the product matrices as n tends to infinity and m varies with n. Specifically, when q >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 1$$\end{document} is a fixed integer, we demonstrate that the limiting spectral radii display a transition phenomenon when the limit of p/n changes from zero to infinity. When q=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=0$$\end{document}, the limiting spectral radii for Ginibre matrices have been obtained by Jiang and Qi [J Theor Probab 30: 326-364, 2017]. When q diverges to infinity as n approaches infinity, we prove that the logarithmic spectral radii exhibit a normal limit, which reduces to the limiting distribution for spectral radii for the spherical ensemble obtained by Chang et al. [J Math Anal Appl 461: 1165-1176, 2018] when p=q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=q$$\end{document}.
引用
收藏
页码:3756 / 3780
页数:25
相关论文
共 50 条
  • [1] Spectral Radii of Products of Random Rectangular Matrices
    Qi, Yongcheng
    Xie, Mengzi
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (04) : 2185 - 2212
  • [2] Limiting Spectral Radii of Circular Unitary Matrices Under Light Truncation
    Miao, Yu
    Qi, Yongcheng
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (04) : 2145 - 2165
  • [3] Spectral Radii of Products of Random Rectangular Matrices
    Yongcheng Qi
    Mengzi Xie
    Journal of Theoretical Probability, 2020, 33 : 2185 - 2212
  • [4] Spectral radii of truncated circular unitary matrices
    Gui, Wenhao
    Qi, Yongcheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 536 - 554
  • [5] Limiting Spectral Radii of Circular Unitary Matrices Under Light Truncation
    Yu Miao
    Yongcheng Qi
    Journal of Theoretical Probability, 2021, 34 : 2145 - 2165
  • [6] Limiting empirical spectral distribution for products of rectangular matrices
    Qi, Yongcheng
    Zhao, Hongru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (02)
  • [7] Limiting distributions of spectral radii for product of matrices from the spherical ensemble
    Chang, Shuhua
    Li, Deli
    Qi, Yongcheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (02) : 1165 - 1176
  • [8] Spectral radii of sparse random matrices
    Benaych-Georges, Florent
    Bordenave, Charles
    Knowles, Antti
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 2141 - 2161
  • [9] Spectral Radii of Large Non-Hermitian Random Matrices
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (01) : 326 - 364
  • [10] Universal microscopic correlation functions for products of independent Ginibre matrices
    Akemann, Gernot
    Burda, Zdzislaw
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (46)