Fructose induces hepatic steatosis in adolescent mice linked to the disorders of lipid metabolism, bile acid metabolism, and autophagy

被引:4
作者
Deng, Siwei [1 ]
Ge, Yao [2 ]
Zhai, Zhian [1 ]
Liu, Haozhen [1 ]
Zhang, Xinyu [1 ]
Chen, Yinfeng [1 ]
Yang, Ying [1 ]
Wu, Zhenlong [1 ,2 ]
机构
[1] China Agr Univ, Dept Compan Anim Sci, State Key Lab Anim Nutr & Feeding, Beijing 100193, Peoples R China
[2] China Agr Univ, Beijing Adv Innovat Ctr Food Nutr & Human Hlth, Beijing 100193, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Fructose; Adolescent mice; Non-alcoholic fatty liver disease; Lipid metabolism; Bile acid metabolism; Autophagy; FATTY LIVER-DISEASE; ENDOPLASMIC-RETICULUM; GASDERMIN D; ER STRESS; PYROPTOSIS; EXECUTOR; CHILDREN; SUGARS;
D O I
10.1016/j.jnutbio.2024.109635
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effects of excessive fructose intake on the development and progression of metabolic disorders have received widespread attention. However, deleterious effects of fructose on the development of hepatic metabolic disease in adolescents and its potential mechanisms are not fully understood. this study, we investigated the effects of isocaloric fructose-rich diets on the liver of adolescent mice. The results showed that fructose-rich diets no effect on the development of obesity in the adolescent mice, but did induce hepatic lipid accumulation. Besides, we found that fructose-rich diets promoted hepatic inflammatory responses and oxidative stress in adolescent mice, which may be associated with activation of the NLRP3 inflammasome and inhibition of the Nrf2 pathway. Furthermore, our results showed that fructose-rich diets caused disturbances in hepatic lipid metabolism and bile acid metabolism, as well as endoplasmic reticulum stress and autophagy dysfunction. Finally, we found that the intestinal barrier function was impaired in mice fed fructose-rich diets. In conclusion, our study demonstrates that dietary high fructose induces hepatic metabolic disorders in adolescent mice. These findings provide a theoretical foundation for fully understanding the effects of high fructose intake on the development of hepatic metabolic diseases during adolescence.
引用
收藏
页数:11
相关论文
共 58 条
[1]   A review of total & added sugar intakes and dietary sources in Europe [J].
Azais-Braesco, Veronique ;
Sluik, Diewertje ;
Maillot, Matthieu ;
Kok, Frans ;
Moreno, Luis A. .
NUTRITION JOURNAL, 2017, 16
[2]   Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways [J].
Badmus, Olufunto O. ;
Hillhouse, Sarah A. ;
Anderson, Christopher D. ;
Hinds Jr, Terry D. ;
Stec, David E. .
CLINICAL SCIENCE, 2022, 136 (18) :1347-1366
[3]   Muc2-dependent microbial colonization of the jejunal mucus layer is diet sensitive and confers local resistance to enteric pathogen infection [J].
Birchenough, George M. H. ;
Schroeder, Bjoern O. ;
Sharba, Sinan ;
Arike, Liisa ;
Recktenwald, Christian V. ;
Puertolas-Balint, Fabiola ;
Subramani, Mahadevan V. ;
Hansson, Karl T. ;
Yilmaz, Bahtiyar ;
K. Linden, Sara ;
Backhed, Fredrik ;
Hansson, Gunnar C. .
CELL REPORTS, 2023, 42 (02)
[4]   TNFa is a key trigger of inflammation in diet-induced non-obese MASLD in mice [J].
Burger, Katharina ;
Jung, Finn ;
Baumann, Anja ;
Brandt, Annette ;
Staltner, Raphaela ;
Sanchez, Victor ;
Bergheim, Ina .
REDOX BIOLOGY, 2023, 66
[5]   Therapeutic regulation of autophagy in hepatic metabolism [J].
Byrnes, Katherine ;
Blessinger, Sophia ;
Bailey, Niani Tiaye ;
Scaife, Russell ;
Liu, Gang ;
Khambu, Bilon .
ACTA PHARMACEUTICA SINICA B, 2022, 12 (01) :33-49
[6]   Age-dependent hepatic alterations induced by a high-fat high-fructose diet [J].
Casagrande, B. P. ;
Gomes, M. F. P. ;
Moura, E. O. C. ;
Santos, A. C. C. ;
Kubota, M. C. ;
Ribeiro, D. A. ;
Pisani, L. P. ;
Medeiros, A. ;
Estadella, D. .
INFLAMMATION RESEARCH, 2019, 68 (05) :359-368
[7]   Manganese metabolism in humans [J].
Chen, Pan ;
Bornhorst, Julia ;
Aschner, Michael .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2018, 23 :1655-1679
[8]   Bile acid and nonalcoholic steatohepatitis: Molecular insights and therapeutic targets [J].
Cheng, Zilu ;
Chen, Yixiong ;
Schnabl, Bernd ;
Chu, Huikuan ;
Yang, Ling .
JOURNAL OF ADVANCED RESEARCH, 2024, 59 :173-187
[9]   FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption [J].
Clifford, Bethan L. ;
Sedgeman, Leslie R. ;
Williams, Kevin J. ;
Morand, Pauline ;
Cheng, Angela ;
Jarrett, Kelsey E. ;
Chan, Alvin P. ;
Brearley-Sholto, Madelaine C. ;
Wahlstrom, Annika ;
Ashby, Julianne W. ;
Barshop, William ;
Wohlschlegel, James ;
Calkin, Anna C. ;
Liu, Yingying ;
Thorell, Anders ;
Meikle, Peter J. ;
Drew, Brian G. ;
Mack, Julia J. ;
Marschall, Hanns-Ulrich ;
Tarling, Elizabeth J. ;
Edwards, Peter A. ;
Vallim, Thomas Q. de Aguiar .
CELL METABOLISM, 2021, 33 (08) :1671-+
[10]   Dietary sugar restriction reduces hepatic de novo lipogenesis in adolescent boys with fatty liver disease [J].
Cohen, Catherine C. ;
Li, Kelvin W. ;
Alazraki, Adina L. ;
Beysen, Carine ;
Carrier, Carissa A. ;
Cleeton, Rebecca L. ;
Dandan, Mohamad ;
Figueroa, Janet ;
Knight-Scott, Jack ;
Knott, Cynthia J. ;
Newton, Kimberly P. ;
Nyangau, Edna M. ;
Sirlin, Claude B. ;
Ugalde-Nicalo, Patricia A. ;
Welsh, Jean A. ;
Hellerstein, Marc K. ;
Schwimmer, Jeffrey B. ;
Vos, Miriam B. .
JOURNAL OF CLINICAL INVESTIGATION, 2021, 131 (24)